login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127659
Exponential amicable numbers.
5
90972, 100548, 454860, 502740, 937692, 968436, 1000692, 1106028, 1182636, 1307124, 1546524, 1709316, 2092356, 2312604, 2638188, 2820132, 2915892, 3116988, 3365964, 3720276, 3729852, 3911796, 4122468, 4275684, 4323564, 4548600, 4688460, 4725756, 4821516, 4842180
OFFSET
1,1
COMMENTS
Union of A126165 and A126166. The first 10 terms of this sequence are the same as the first 10 terms of A127660.
REFERENCES
Hagis, Peter Jr.; Some Results Concerning Exponential Divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.
LINKS
J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]
J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
FORMULA
Non-e-perfect numbers for which A126164(A126164(n))=n.
EXAMPLE
a(5)=937692 because the fifth non-e-perfect integer that satisfies A126164(A126164(n))=n is 937692.
MATHEMATICA
ExponentialDivisors[1]={1}; ExponentialDivisors[n_]:=Module[{}, {pr, pows}=Transpose@FactorInteger[n]; divpowers=Distribute[Divisors[pows], List]; Sort[Times@@(pr^Transpose[divpowers])]]; se[n_]:=Plus@@ExponentialDivisors[n]-n; g[n_] := If[n > 0, se[n], 0]; eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; ExponentialAmicableNumberQ[k_]:=If[Nest[se, k, 2]==k && !se[k]==k, True, False]; Select[Range[5 10^6], ExponentialAmicableNumberQ[ # ] &]
fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m != n && esigma[m] - m == n, AppendTo[s, n]], {n, 1, 10^6}]; s (* Amiram Eldar, May 09 2019 *)
KEYWORD
nonn
AUTHOR
Ant King, Jan 25 2007
EXTENSIONS
Link corrected by Andrew Lelechenko, Dec 04 2011
More terms from Amiram Eldar, May 09 2019
STATUS
approved