login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323753
Lesser member of primitive exponential amicable pairs.
1
90972, 937692, 4548600, 44030448, 46884600, 453842928, 712931184, 906494400, 20907057600, 34793179200, 47646797328, 53469838800, 240707724300
OFFSET
1,1
COMMENTS
Exponential amicable pair (m,n) is primitive if there is no prime number that is a unitary divisor of both m and n. All the other amicable pairs can be generated from primitive pairs by multiplying them with a squarefree integer coprime to each of the members of the pair. Hagis found the first 6 terms in 1988. Pedersen found the next 7 terms in 1999.
a(14) <= 588330137304.
The larger counterparts are in A323754.
LINKS
Peter Hagis, Jr., Some Results Concerning Exponential Divisors, International Journal of Mathematics and Mathematical Sciences, Vol. 11, No. 2, (1988), pp. 343-350.
EXAMPLE
(90972 = 2^2*3^2*7*19^2, 100548 = 2^2*3^3*7^2*19) are a primitive pair since they are an exponential amicable pair (A126165, A126166) and they do not have a common prime divisor with multiplicity 1 in both.
(454860, 502740) = 5 * (90972, 100548) are not a primitive pair since 5 divides both of them only once.
MATHEMATICA
rad[n_] := Times @@ First /@ FactorInteger[n]; pf[n_] := Denominator[n/rad[n]^2]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; es[n_] := esigma[n] - n; s = {}; Do[m = es[n]; If[m > n && es[m] == n && CoprimeQ[pf[n], pf[m]], AppendTo[s, n]], {n, 1, 10^7}]; s (* after Jean-François Alcover at A055231 and A051377 *)
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Jan 26 2019
STATUS
approved