login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A162496
Number of reduced words of length n in the reflection group [3,4,3] of order 1152.
3
1, 4, 9, 16, 25, 36, 48, 60, 71, 80, 87, 92, 94, 92, 87, 80, 71, 60, 48, 36, 25, 16, 9, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
This is also the Weyl group F_4.
REFERENCES
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10.
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
FORMULA
G.f.: (1-x^2)*(1-x^6)*(1-x^8)*(1-x^12)/(1-x)^4
PROG
(Magma) G := CoxeterGroup(GrpFPCox, "F4");
f := GrowthFunction(G);
Coefficients(f);
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
John Cannon and N. J. A. Sloane, Dec 01 2009
STATUS
approved