login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162494 Number of reduced words of length n in the Weyl group E_8 on 8 generators and order 696729600. 4
1, 8, 35, 112, 294, 672, 1386, 2640, 4718, 8000, 12978, 20272, 30645, 45016, 64470, 90264, 123829, 166768, 220849, 287992, 370250, 469784, 588833, 729680, 894613, 1085880, 1305640, 1555912, 1838523, 2155056, 2506798, 2894688, 3319268, 3780640, 4278429 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche VII.)

H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10.

J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..120

FORMULA

G.f.: (1-x^2)*(1-x^8)*(1-x^12)*(1-x^14)*(1-x^18)*(1-x^20)*(1-x^24)*(1-x^30)/(1-x)^8.

MATHEMATICA

CoefficientList[Series[(1 - x^2) (1 - x^8) (1 - x^12) (1 - x^14) (1 - x^18) (1 - x^20) (1 - x^24) (1 - x^30) / (1 - x)^8, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)

PROG

(Magma) G := CoxeterGroup(GrpFPCox, "E8");

f := GrowthFunction(G);

Coefficients(f);

(PARI) Vec((1-x^2)*(1-x^8)*(1-x^12)*(1-x^14)*(1-x^18)*(1-x^20)*(1-x^24)*(1-x^30)/(1-x)^8 + O(x^121)) \\ Jinyuan Wang, Mar 08 2020

CROSSREFS

Cf. A161409, A162493.

Sequence in context: A005732 A162211 A161717 * A040977 A266785 A267170

Adjacent sequences: A162491 A162492 A162493 * A162495 A162496 A162497

KEYWORD

nonn,fini,full

AUTHOR

John Cannon and N. J. A. Sloane, Dec 01 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 17:56 EDT 2023. Contains 361672 sequences. (Running on oeis4.)