login
A162497
Number of reduced words of length n in the reflection group [3,3,5] of order 14400.
3
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 168, 192, 216, 240, 264, 288, 312, 336, 359, 380, 399, 416, 431, 444, 455, 464, 471, 476, 478, 476, 471, 464, 455, 444, 431, 416, 399, 380, 359, 336, 312, 288, 264, 240, 216, 192, 168, 144, 121, 100, 81, 64, 49, 36, 25, 16
OFFSET
0,2
COMMENTS
This is also the Weyl group H_4.
REFERENCES
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10.
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
FORMULA
G.f.: (1-x^2)*(1-x^12)*(1-x^20)*(1-x^30)/(1-x)^4.
PROG
(Magma) G := CoxeterGroup(GrpFPCox, "H4");
f := GrowthFunction(G);
Coefficients(f);
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
John Cannon and N. J. A. Sloane, Dec 01 2009
STATUS
approved