login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335640
Numbers k of the form r^2 - t*r*s + s^2, where r, s and t are positive integers, r + s = k and t < r <= s.
0
4, 9, 16, 25, 36, 45, 49, 64, 81, 96, 100, 121, 144, 169, 175, 196, 225, 256, 288, 289, 320, 324, 361, 400, 441, 484, 529, 576, 625, 640, 676, 729, 784, 841, 891, 900, 961, 1024, 1089, 1156, 1200, 1225, 1296, 1350, 1369, 1444, 1521, 1573, 1600, 1681, 1764, 1849, 1936, 2016
OFFSET
1,1
COMMENTS
From Robert Israel, Apr 03 2023: (Start)
Includes m^2 for m >= 2: for k = m^2. take t = 2, r = (m^2 - m)/2, s = (m^2 + m)/2.
Includes A152618(n) = (n-1)^2*(n+1) for n >= 3: take t = n - 1, r = n^2 - n, s = n^3 - 2*n^2 + 1.
Another infinite family of solutions: t = 3, r = y - 1, s = (x + 3*y)/2 - 1, k = (x + 5*y)/2 - 2 where x and y satisfy the Pell-type equation x^2 + 4 = 5*y^2.
(End)
EXAMPLE
9 is in the sequence since 9 = 3^2 - 2*3*6 + 6^2.
MAPLE
N:= 3000: # for terms <= N
R:= {4}:
for t from 2 to N/2 do
for r from t+1 to N/2 do
c:= r^2-r;
b:= 1+t*r;
delta:= b^2 - 4*c;
if not issqr(delta) then next fi;
delta:= sqrt(delta);
S:= select(x -> x::posint and x >= r and r+x <= N, {(b+delta)/2, (b-delta)/2});
R:= R union map(`+`, S, r);
od od:
sort(convert(R, list)); # Robert Israel, Apr 04 2023
MATHEMATICA
Table[If[Sum[Sum[KroneckerDelta[i^2 - k*i (n - i) + (n - i)^2, n], {k, i - 1}], {i, Floor[n/2]}] > 0, n, {}], {n, 200}] // Flatten
CROSSREFS
Sequence in context: A070459 A292676 A241971 * A302053 A162496 A159852
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Oct 04 2020
STATUS
approved