login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k of the form r^2 - t*r*s + s^2, where r, s and t are positive integers, r + s = k and t < r <= s.
0

%I #31 Apr 04 2023 22:10:48

%S 4,9,16,25,36,45,49,64,81,96,100,121,144,169,175,196,225,256,288,289,

%T 320,324,361,400,441,484,529,576,625,640,676,729,784,841,891,900,961,

%U 1024,1089,1156,1200,1225,1296,1350,1369,1444,1521,1573,1600,1681,1764,1849,1936,2016

%N Numbers k of the form r^2 - t*r*s + s^2, where r, s and t are positive integers, r + s = k and t < r <= s.

%C From _Robert Israel_, Apr 03 2023: (Start)

%C Includes m^2 for m >= 2: for k = m^2. take t = 2, r = (m^2 - m)/2, s = (m^2 + m)/2.

%C Includes A152618(n) = (n-1)^2*(n+1) for n >= 3: take t = n - 1, r = n^2 - n, s = n^3 - 2*n^2 + 1.

%C Another infinite family of solutions: t = 3, r = y - 1, s = (x + 3*y)/2 - 1, k = (x + 5*y)/2 - 2 where x and y satisfy the Pell-type equation x^2 + 4 = 5*y^2.

%C (End)

%e 9 is in the sequence since 9 = 3^2 - 2*3*6 + 6^2.

%p N:= 3000: # for terms <= N

%p R:= {4}:

%p for t from 2 to N/2 do

%p for r from t+1 to N/2 do

%p c:= r^2-r;

%p b:= 1+t*r;

%p delta:= b^2 - 4*c;

%p if not issqr(delta) then next fi;

%p delta:= sqrt(delta);

%p S:= select(x -> x::posint and x >= r and r+x <= N, {(b+delta)/2,(b-delta)/2});

%p R:= R union map(`+`,S,r);

%p od od:

%p sort(convert(R,list)); # _Robert Israel_, Apr 04 2023

%t Table[If[Sum[Sum[KroneckerDelta[i^2 - k*i (n - i) + (n - i)^2, n], {k, i - 1}], {i, Floor[n/2]}] > 0, n, {}], {n, 200}] // Flatten

%Y Cf. A000290, A152618.

%K nonn

%O 1,1

%A _Wesley Ivan Hurt_, Oct 04 2020