login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056293
Number of n-bead necklace structures using a maximum of five different colored beads.
9
1, 2, 3, 7, 12, 42, 123, 503, 2008, 8720, 38365, 173609, 792828, 3662924, 17034381, 79703081, 374624254, 1767883444, 8370666417, 39751072847, 189262621864, 903220058756, 4319518316899, 20697040198889, 99343899144822, 477609477924308, 2299585449279713
OFFSET
1,2
COMMENTS
Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
FORMULA
Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 60] * (5*S2(n/d + 4, 5) - 50*S2(n/d + 3, 5) + 175*S2(n/d + 2, 5) - 250*S2(n/d + 1, 5) + 120*S2(n/d, 5)) + [d==30 mod 60] * (4*S2(n/d+4,5) - 41*S2(n/d+3,5) + 149*S2(n/d+2,5) - 226*S2(n/d + 1, 5) + 120*S2(n/d, 5)) + [d==20 mod 60 | d==40 mod 60] * (4*S2(n/d + 4, 5) - 42*S2(n/d + 3, 5) + 156*S2(n/d + 2, 5) - 238*S2(n/d + 1, 5) + 120*S2(n/d, 5)) + [d==15 mod 60 | d==45 mod 60] * (3*S2(n/d + 4, 5) - 33*S2(n/d + 3, 5) + 129*S2(n/d + 2, 5) - 210*S2(n/d + 1, 5) + 120*S2(n/d, 5)) + [d mod 60 in {12,24,36,48}] * (4*S2(n/d + 4, 5) - 40*S2(n/d + 3, 5) + 140*S2(n/d + 2, 5) - 200*S2(n/d+1, 5) + 96*S2(n/d, 5)) + [d=10 mod 60 | d==50 mod 60] * (3*S2(n/d + 4, 5) - 33*S2(n/d + 3, 5) + 130*S2(n/d + 2, 5) - 214*S2(n/d + 1, 5) + 120*S2(n/d, 5)) + [d mod 60 in {6,18,42,54}] * (3*S2(n/d + 4, 5) - 31*S2(n/d + 3, 5) + 114*S2(n/d + 2, 5) - 176*S2(n/d + 1, 5) + 96*S2(n/d, 5)) + [d mod 60 in {5,25,35,55}] * (2*S2(n/d + 4, 5) - 23*S2(n/d + 3, 5) + 95*S2(n/d + 2, 5) - 165*S2(n/d + 1, 5) + 100*S2(n/d, 5)) + [d mod 60 in {4,8,16,28,32,44,52,56}] * (3*S2(n/d + 4, 5) - 32*S2(n/d + 3, 5) + 121*S2(n/d + 2, 5) - 188*S2(n/d + 1, 5) + 96*S2(n/d, 5)) + [d mod 60 in {3,9,21,27,33,39,51,57}] * (2*S2(n/d + 4, 5) - 23*S2(n/d + 3, 5) + 94*S2(n/d + 2, 5) - 160*S2(n/d + 1, 5) + 96*S2(n/d, 5)) + [d mod 60 in {2,14,22,26,34,38,46,58}] * (2*S2(n/d + 4, 5) - 23*S2(n/d + 3, 5) + 95*S2(n/d + 2, 5) - 164*S2(n/d + 1, 5) + 96*S2(n/d, 5)) + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] * (S2[n/d + 4, 5) - 13*S2(n/d + 3, 5) + 60*S2(n/d + 2, 5) - 115*S2(n/d + 1, 5) + 76*S2(n/d, 5))), where S2(n,k) is the Stirling subset number, A008277.
G.f.: 1 - Sum_{d>0} (phi(d) / d) * ([d==0 mod 60] * log(1-5x^d) + [d==30 mod 60] * (3*log(1-5x^d) + log(1-x^d)) / 4 + [d==20 mod 60 | d==40 mod 60] * (2*log(1-5x^d) + log(1-2x^d)) / 3 + [d==15 mod 60 | d==45 mod 60] * (3*log(1-5x^d) + 2*log(1-3x^d) + 3*log(1-x^d)) / 8 + [d mod 60 in {12,24,36,48}] * 4*log(1-5x^d) / 5 + [d=10 mod 60 | d==50 mod 60] * (5*log(1-5x^d) + 4*log(1-2x^d) + 3*log(1-x^d)) / 12 + [d mod 60 in {6,18,42,54}] * (11*log(1-5x^d) + 5*log(1-x^d)) / 20 + [d mod 60 in {5,25,35,55}] * (5*log(1-5x^d) + 2*log(1-3x^d) + 4*log(1-2x^d) + 9*log(1-x^d)) / 24 + [d mod 60 in {4,8,16,28,32,44,52,56}] * (7*log(1-5x^d) + 5*log(1-2x^d)) / 15 + [d mod 60 in {3,9,21,27,33,39,51,57}] * (7*log(1-5x^d) + 10*log(1-3x^d) + 15*log(1-x^d)) / 40 + [d mod 60 in {2,14,22,26,34,38,46,58}] * (13*log(1-5x^d) + 20*log(1-2x^d) + 15*log(1-x^d)) / 60 +[d mod 60 in{1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] * (log(1-5x^d) + 10*log(1-3x^d) + 20*log(1-2x^d) + 45*log(1-x^d)) / 120).
(End)
MATHEMATICA
Adn[d_, n_] := Module[{ c, t1, t2}, t2 = 0; For[c = 1, c <= d, c++, If[Mod[d, c] == 0 , t2 = t2 + (x^c/c)*(E^(c*z) - 1)]]; t1 = E^t2; t1 = Series[t1, {z, 0, n+1}]; Coefficient[t1, z, n]*n!]; Pn[n_] := Module[{ d, e, t1}, t1 = 0; For[d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*Adn[d, n/d]/n]]; t1/(1 - x)]; Pnq[n_, q_] := Module[{t1}, t1 = Series[Pn[n], {x, 0, q+1}] ; Coefficient[t1, x, q]]; a[n_] := Pnq[n, 5]; Table[Print[an = a[n]]; an, {n, 1, 24}] (* Jean-François Alcover, Oct 04 2013, after N. J. A. Sloane's Maple code *)
(* this Mathematica program uses Gilbert and Riordan's recurrence formula, which they recommend for calculations: *)
Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
Table[SeriesCoefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]
/(n (1 - x)), {x, 0, 5}], {n, 1, 40}] (* Robert A. Russell, Feb 24 2018 *)
From Robert A. Russell, May 29 2018: (Start)
Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], 5 StirlingS2[n/#+4, 5] - 50 StirlingS2[n/#+3, 5] + 175 StirlingS2[n/#+2, 5] - 250 StirlingS2[n/#+1, 5] + 120 StirlingS2[n/#, 5], Divisible[#, 30], 4 StirlingS2[n/#+4, 5] - 41 StirlingS2[n/#+3, 5] + 149 StirlingS2[n/#+2, 5] - 226 StirlingS2[n/#+1, 5] + 120 StirlingS2[n/#, 5], Divisible[#, 20], 4 StirlingS2[n/#+4, 5] - 42 StirlingS2[n/#+3, 5] + 156 StirlingS2[n/#+2, 5] - 238 StirlingS2[n/#+1, 5] + 120 StirlingS2[n/#, 5], Divisible[#, 15], 3 StirlingS2[n/#+4, 5] - 33 StirlingS2[n/#+3, 5] + 129 StirlingS2[n/#+2, 5] - 210 StirlingS2[n/#+1, 5] + 120 StirlingS2[n/#, 5], Divisible[#, 12], 4 StirlingS2[n/#+4, 5] - 40 StirlingS2[n/#+3, 5] + 140 StirlingS2[n/#+2, 5] - 200 StirlingS2[n/#+1, 5] + 96 StirlingS2[n/#, 5], Divisible[#, 10], 3 StirlingS2[n/#+4, 5] - 33 StirlingS2[n/#+3, 5] + 130 StirlingS2[n/#+2, 5] - 214 StirlingS2[n/#+1, 5] + 120 StirlingS2[n/#, 5], Divisible[#, 6], 3 StirlingS2[n/#+4, 5] - 31 StirlingS2[n/#+3, 5] + 114 StirlingS2[n/#+2, 5] - 176 StirlingS2[n/#+1, 5] + 96 StirlingS2[n/#, 5], Divisible[#, 5], 2 StirlingS2[n/#+4, 5] - 23 StirlingS2[n/#+3, 5] + 95 StirlingS2[n/#+2, 5] - 165 StirlingS2[n/#+1, 5] + 100 StirlingS2[n/#, 5], Divisible[#, 4], 3 StirlingS2[n/#+4, 5] - 32 StirlingS2[n/#+3, 5] + 121 StirlingS2[n/#+2, 5] - 188 StirlingS2[n/#+1, 5] + 96 StirlingS2[n/#, 5], Divisible[#, 3], 2 StirlingS2[n/#+4, 5] - 23 StirlingS2[n/#+3, 5] + 94 StirlingS2[n/#+2, 5] - 160 StirlingS2[n/#+1, 5] + 96 StirlingS2[n/#, 5], Divisible[#, 2], 2 StirlingS2[n/#+4, 5] - 23 StirlingS2[n/#+3, 5] + 95 StirlingS2[n/#+2, 5] - 164 StirlingS2[n/#+1, 5] + 96 StirlingS2[n/#, 5], True, StirlingS2[n/#+4, 5] - 13 StirlingS2[n/#+3, 5] + 60 StirlingS2[n/#+2, 5] - 115 StirlingS2[n/#+1, 5] + 76 StirlingS2[n/#, 5]] &], {n, 1, 40}]
mx = 40; Drop[CoefficientList[Series[1-Sum[(EulerPhi[d] / d) Which[ Divisible[d, 60], Log[1-5x^d], Divisible[d, 30], (3 Log[1-5x^d] + Log[1-x^d]) / 4, Divisible[d, 20], (2 Log[1-5x^d] + Log[1-2x^d]) / 3, Divisible[d, 15], (3 Log[1-5x^d] + 2 Log[1-3x^d] + 3 Log[1-x^d]) / 8, Divisible[d, 12], 4 Log[1-5x^d] / 5, Divisible[d, 10], (5 Log[1-5x^d] + 4 Log[1-2x^d] + 3 Log[1-x^d]) / 12, Divisible[d, 6], (11 Log[1-5x^d] + 5 Log[1-x^d]) / 20, Divisible[d, 5], (5 Log[1-5x^d] + 2 Log[1-3x^d] + 4 Log[1-2x^d] + 9 Log[1-x^d]) / 24, Divisible[d, 4], (7 Log[1-5x^d] + 5 Log[1-2x^d]) / 15, Divisible[d, 3], (7 Log[1-5x^d] + 10 Log[1-3x^d] + 15 Log[1-x^d]) / 40, Divisible[d, 2], (13 Log[1-5x^d] + 20 Log[1-2x^d] + 15 Log[1-x^d]) / 60, True, (Log[1-5x^d] + 10 Log[1-3x^d] + 20 Log[1-2x^d] + 45 Log[1-x^d]) / 120], {d, 1, mx}], {x, 0, mx}], x], 1]
(End)
CROSSREFS
Sequence in context: A084708 A035003 A143879 * A275311 A056294 A084423
KEYWORD
nonn
STATUS
approved