login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262354
a(n) is the number of 2 X 2 matrices over Z_p with determinant in {1,-1} where p = prime(n).
0
6, 48, 240, 672, 2640, 4368, 9792, 13680, 24288, 48720, 59520, 101232, 137760, 158928, 207552, 297648, 410640, 453840, 601392, 715680, 777888, 985920, 1143408, 1409760, 1825152, 2060400, 2185248, 2449872, 2589840, 2885568, 4096512, 4495920, 5142432, 5370960
OFFSET
1,1
COMMENTS
a(n) divides A244509(n).
For n>2 (i.e. p=prime(n)>=5), a(n) gives the order of the largest proper subgroup of GL(2,Z_p).
LINKS
Gregor Olsavsky, Groups formed from 2 X 2 matrices over Z_p, Mathematics Magazine, Vol. 63, No. 4 (Oct., 1990), pp. 269-272.
FORMULA
For n>1, a(n) = 2*p*(p^2-1) where p = prime(n).
For n>1, a(n) = 2*A127917(n).
MATHEMATICA
Prepend[2 Table[(Prime@ n + 1) Prime@ n (Prime@ n - 1), {n, 2, 34}], 6] (* Michael De Vlieger, Mar 24 2016, after Artur Jasinski at A127917 *)
PROG
(Sage) [6] + [2*p*(p^2-1) for p in prime_range(3, 150)]
(PARI) lista(nn) = {print1(6, ", "); forprime(p=3, nn, print1(2*p*(p^2-1), ", ")); } \\ Altug Alkan, Mar 24 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Tom Edgar, Mar 24 2016
STATUS
approved