Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Oct 05 2024 16:30:53
%S 0,0,6,0,260,20720,6,5112,1223136,257706024,48,81876,67769552,
%T 54278580036,44900438149488,260,1223396,3731753700,11681058472672,
%U 38403264917970196,131160169581733489616,1200,17815020,207438938000,2570217454576416,33725471278376393424,460532748521625850986660,6467585568566200114362823920,5106,257706012,11681057249536,576229125971686224
%N Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly four colors under translational symmetry, 1 <= k <= n.
%C Colors are not being permuted, i.e., Power Group Enumeration does not apply here.
%D F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
%H Andrew Howroyd, <a href="/A294686/b294686.txt">Table of n, a(n) for n = 1..820</a> (first 40 rows)
%H Marko Riedel et al., <a href="https://math.stackexchange.com/questions/2506511/">Burnside lemma and translational symmetries of the torus.</a>
%F T(n,k) = (Q!/(n*k))*(Sum_{d|n} Sum_{f|k} phi(d) phi(f) S(gcd(d,f)*(n/d)*(k/f), Q)) with Q=4 and S(n,k) Stirling numbers of the second kind.
%F T(n,k) = A184277(n,k) - 4*A184284(n,k) + 6*A184271(n,k) - 4. - _Andrew Howroyd_, Oct 05 2024
%e Triangle begins:
%e 0;
%e 0, 6;
%e 0, 260, 20720;
%e 6, 5112, 1223136, 257706024;
%e 48, 81876, 67769552, 54278580036, 44900438149488;
%e 260, 1223396, 3731753700, 11681058472672, 38403264917970196, 131160169581733489616;
%e ...
%o (PARI) T(n,m)=my(k=4); k!*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), k, 2) ))/(n*m) \\ _Andrew Howroyd_, Oct 05 2024
%Y Main diagonal is A376824.
%Y Cf. A294684, A294685, A294687, A294791, A294792, A294793, A294794. T(n,1) is A056284.
%Y Cf. A184271, A184284, A184277.
%K nonn,tabl,nice
%O 1,3
%A _Marko Riedel_, Nov 06 2017