Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Mar 04 2024 00:13:22
%S 1,4,10,22,44,84,155,278,490,850,1457,2474,4167,6974,11609,19238,
%T 31762,52274,85806,140534,229735,374958,611158,995016,1618409,2630222,
%U 4271663,6933430,11248251,18240668,29569464,47920016,77639264,125763290,203680213,329821130,534014584
%N Growth of the Lamplighter group: number of elements in the Lamplighter group L_2 = Z/2Z wr Z of length up to n with respect to the standard generating set {a,t}.
%C The group is presented by L_2 = <a, t | 1 = a^2 = [a, t^(-k) a t^k], for all k>.
%H Walter Parry, <a href="https://doi.org/10.1090/S0002-9947-1992-1062874-3">Growth series of some wreath products</a>, Trans. Amer. Math. Soc. 331 (1992), 751-759.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lamplighter_group">Lamplighter group</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, 0, -5, -3, 2, 3, 1).
%F G.f.: (1-x)(1+x)^3(1+x+x^2) / ((1-x-x^2)(1-x^2-x^3)^2).
%e a(2)=10, since the elements of length up to 2 are 1, a, t, t^-1, at, at^-1, ta, t^2, t^-1a, t^-2.
%t CoefficientList[ Series[((x^2 + x + 1) (x - 1) (x + 1)^3)/((x^3 + x^2 - 1)^2 (x^2 + x - 1)), {x, 0, 36}], x] (* or *)
%t LinearRecurrence[{1, 3, 0, -5, -3, 2, 3, 1}, {1, 4, 10, 22, 44, 84, 155, 278}, 37] (* _Robert G. Wilson v_, Aug 08 2018 *)
%o (PARI) Vec((1-x)*(1+x)^3*(1+x+x^2)/((1-x-x^2)*(1-x^2-x^3)^2) + O(x^40)) \\ _Michel Marcus_, Nov 07 2017
%Y Partial sums of A288348.
%K nonn,easy
%O 0,2
%A _Zoran Sunic_, Nov 06 2017
%E More terms from _Michel Marcus_, Nov 07 2017