login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181640
Partial sums of floor(n^2/5) (A118015).
1
0, 0, 0, 1, 4, 9, 16, 25, 37, 53, 73, 97, 125, 158, 197, 242, 293, 350, 414, 486, 566, 654, 750, 855, 970, 1095, 1230, 1375, 1531, 1699, 1879, 2071, 2275, 2492, 2723, 2968, 3227, 3500, 3788, 4092, 4412, 4748, 5100, 5469, 5856, 6261, 6684, 7125, 7585, 8065, 8565
OFFSET
0,5
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = Sum_{k=0..n} floor(k^2/5).
a(n) = round((2*n^3 + 3*n^2 - 11*n - 6)/30).
a(n) = floor((2*n^3 + 3*n^2 - 11*n + 6)/30).
a(n) = ceiling((2*n^3 + 3*n^2 - 11*n - 18)/30).
a(n) = a(n-5) + (n-2)^2, n > 4.
From Bruno Berselli, Dec 15 2010: (Start)
G.f.: x^3*(1+x)/((1 + x + x^2 + x^3 + x^4)*(1-x)^4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) for n > 7. (End)
EXAMPLE
a(5) = 9 = 0 + 0 + 0 + 1 + 3 + 5.
MAPLE
a(n):=round((2*n^(3)+3*n^(2)-11*n-6)/(30))
PROG
(Magma) [Floor((2*n^3+3*n^2-11*n+6)/30): n in [0..50]]; // Vincenzo Librandi, May 01 2011
CROSSREFS
Cf. A118015.
Sequence in context: A008086 A008087 A008088 * A033616 A265055 A011895
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Nov 18 2010
STATUS
approved