OFFSET
0,5
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1).
FORMULA
a(n) = Sum_{k=0..n} floor(k^2/5).
a(n) = round((2*n^3 + 3*n^2 - 11*n - 6)/30).
a(n) = floor((2*n^3 + 3*n^2 - 11*n + 6)/30).
a(n) = ceiling((2*n^3 + 3*n^2 - 11*n - 18)/30).
a(n) = a(n-5) + (n-2)^2, n > 4.
From Bruno Berselli, Dec 15 2010: (Start)
G.f.: x^3*(1+x)/((1 + x + x^2 + x^3 + x^4)*(1-x)^4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) for n > 7. (End)
EXAMPLE
a(5) = 9 = 0 + 0 + 0 + 1 + 3 + 5.
MAPLE
a(n):=round((2*n^(3)+3*n^(2)-11*n-6)/(30))
PROG
(Magma) [Floor((2*n^3+3*n^2-11*n+6)/30): n in [0..50]]; // Vincenzo Librandi, May 01 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Nov 18 2010
STATUS
approved