login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181641
Expansion of sqrt(1-4*x)/(1+x).
0
1, -3, 1, -5, -5, -23, -61, -203, -655, -2205, -7519, -26073, -91499, -324525, -1161275, -4187605, -15202085, -55513255, -203776325, -751501075, -2783025305, -10345215535, -38587318505, -144377808775, -541741418525
OFFSET
0,2
COMMENTS
Hankel transform is alternating sign version of A082762.
REFERENCES
Joseph Edwards, Differential Calculus with Applications and Numerous Examples: An Elementary Treatise, 1886.
FORMULA
G.f.: sqrt(1-4*x)/(1+x).
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(2k,k)/(1-2k).
D-finite with recurrence: n*a(n) + 3*(2-n)*a(n-1) + 2*(3-2*n)*a(n-2) = 0. - R. J. Mathar, Nov 16 2011.
G.f. A(x) = 1/G(0), where G(k) = 1 + x/(1 - (4*k+2)/((4*k+2) + (k+1)/G(k+1))); (continued fraction 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 24 2012
G.f.: 2/(1+x)/G(0), where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
a(n) = binomial(2*n,n) * hypergeom([1, -n], [1/2], 5/4). - Vladimir Reshetnikov, Oct 02 2016
a(n) ~ -2^(2*n+1) / (5*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 03 2016
MATHEMATICA
CoefficientList[Series[Sqrt[1-4x]/(1+x), {x, 0, 30}], x] (* Harvey P. Dale, Jul 20 2011 *)
Table[FullSimplify[(-1)^n*Sqrt[5] - 1/(1+2*n)*Binomial[2*(1+n), 1+n] * Hypergeometric2F1[1, 1/2+n, 2+n, -4]], {n, 0, 20}] (* Vaclav Kotesovec, Jan 31 2014 *)
Table[Binomial[2 n, n] Hypergeometric2F1[1, -n, 1/2, 5/4], {n, 0, 30}] (* Vladimir Reshetnikov, Oct 02 2016 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k, k)/(1-2*k)); \\ Michel Marcus, Oct 03 2016
CROSSREFS
Cf. A082762.
Sequence in context: A220479 A146913 A146252 * A049266 A089028 A209758
KEYWORD
easy,sign
AUTHOR
Paul Barry, Nov 03 2010
STATUS
approved