login
A220479
Total number of smallest parts that are also emergent parts in all partitions of n.
5
0, 0, 0, 1, 0, 3, 1, 5, 5, 10, 8, 22, 19, 33, 40, 62, 67, 107, 118, 175, 208, 282, 331, 462, 542, 712, 859, 1112, 1323, 1709, 2030, 2568, 3078, 3830, 4577, 5687, 6760, 8291, 9885, 12045, 14290, 17334, 20515, 24710, 29242, 35004, 41282, 49283, 57963, 68836
OFFSET
1,6
COMMENTS
For the definition of emergent parts see A182699.
LINKS
FORMULA
a(n) = A092269(n) - A000070(n-1) - A002865(n) = A092269(n) - A120452(n+1) = A195820(n) - A002865(n).
a(n) = A092269(n) - A000041(n) - A000070(n-2), n >= 2.
a(n) = A215513(n) - A000070(n-2), n >= 2.
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Jul 31 2017
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r==0, q, 0] + Sum[b[n-i*j, i-1], {j, 0, n/i}]];
c[n_] := b[n, n];
d[n_] := Total[PartitionsP[Range[0, n-3]]] + PartitionsP[n-1];
a[n_] := c[n] - d[n+1];
Array[a, 50] (* Jean-François Alcover, Jun 05 2021, using Alois P. Heinz's code for A092269 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 12 2013
EXTENSIONS
a(43) corrected by Vaclav Kotesovec, Jul 31 2017
STATUS
approved