login
A213952
Consider the partitions of n in reverse lexicographic ordering (A080577), a(n) is the position of the partition of n which has the maximum LCM. See A000793.
3
1, 1, 1, 1, 3, 1, 5, 5, 8, 15, 13, 33, 49, 35, 49, 73, 107, 143, 211, 293, 398, 505, 510, 685, 710, 948, 740, 994, 2033, 1735, 2266, 1780, 2333, 4653, 5923, 7311, 9213, 7683, 9719, 17878, 14703, 19072, 22814, 28266, 34878, 42876, 52390
OFFSET
1,5
COMMENTS
As n grows, a(n)/P(n) -> ~1/3, where P(n) is A000041(n).
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..84
EXAMPLE
a(5) = 3 because of the seven partitions of 5, {{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}; the LCMs of each are: {5, 4, 6, 3, 2, 2, 1}. The third one is the maximum.
MATHEMATICA
f[n_] := Block[{lst = Apply[LCM, IntegerPartitions@ n, 1]}, Flatten[ Position[ lst, Max@ lst, 1, 1], 1][[1]]]; Array[f, 47]
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jul 04 2012
STATUS
approved