login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215513
spt(n) - p(n): total number of smallest parts in all partitions of n minus the number of partitions of n.
3
0, 1, 2, 5, 7, 15, 20, 35, 50, 77, 105, 161, 214, 305, 413, 570, 751, 1022, 1330, 1772, 2295, 2996, 3837, 4970, 6305, 8050, 10155, 12844, 16065, 20169, 25055, 31197, 38549, 47650, 58540, 71960, 87916, 107424, 130655, 158830, 192260, 232642, 280406
OFFSET
1,3
COMMENTS
Also total number of smallest parts that are not on the right border in all partitions of n.
LINKS
FORMULA
a(n) = A092269(n) - A000041(n).
a(n) = A000070(n-2) + A220479(n), n >= 2.
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*Pi*sqrt(2*n)) * (1 - 25*Pi/(24*sqrt(6*n)) + (25/48 + 49*Pi^2/6912)/n). - Vaclav Kotesovec, Jul 31 2017
EXAMPLE
For n = 6 the partitions of 6 with the smallest parts that are not in the right border in brackets are
-----------------------------------------
. Partitions of 6 Value
-----------------------------------------
. 6 0
. [3]+ 3 1
. 4 + 2 0
. [2]+[2]+ 2 2
. 5 + 1 0
. 3 + 2 + 1 0
. 4 +[1]+ 1 1
. 2 + 2 +[1]+ 1 1
. 3 +[1]+[1]+ 1 2
. 2 +[1]+[1]+[1]+ 1 3
. [1]+[1]+[1]+[1]+[1]+ 1 5
--------------------------------------
. Total: 15
On the other hand the total number of smallest parts in all partitions of 6 is 26 and the number of partitions of 6 is 11, so a(6) = 26 - 11 = 15.
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
a[n_] := b[n, n] - PartitionsP[n];
Array[a, 50] (* Jean-François Alcover, Jun 05 2021, using Alois P. Heinz's code for A092269 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 13 2013
STATUS
approved