login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209758
Triangle of coefficients of polynomials v(n,x) jointly generated with A210041; see the Formula section.
3
1, 1, 3, 1, 5, 6, 1, 7, 13, 12, 1, 9, 22, 32, 24, 1, 11, 33, 63, 76, 48, 1, 13, 46, 107, 170, 176, 96, 1, 15, 61, 166, 321, 440, 400, 192, 1, 17, 78, 242, 546, 912, 1104, 896, 384, 1, 19, 97, 337, 864, 1683, 2488, 2704, 1984, 768, 1, 21, 118, 453, 1296, 2865
OFFSET
1,3
COMMENTS
Row sums: -1+(odd-indexed Fibonacci numbers)
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...3
1...5...6
1...7...13...12
1...9...22...32...24
First three polynomials v(n,x): 1, 1 + 3x , 1 + 5x + 6x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210041 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209758 *)
CROSSREFS
Sequence in context: A181641 A049266 A089028 * A134083 A210551 A113445
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 17 2012
STATUS
approved