login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209761
Triangle of coefficients of polynomials u(n,x) jointly generated with A209762; see the Formula section.
3
1, 1, 2, 2, 5, 4, 3, 10, 14, 8, 4, 17, 34, 36, 16, 5, 26, 68, 104, 88, 32, 6, 37, 120, 240, 296, 208, 64, 7, 50, 194, 480, 776, 800, 480, 128, 8, 65, 294, 868, 1736, 2352, 2080, 1088, 256, 9, 82, 424, 1456, 3472, 5824, 6784, 5248, 2432, 512, 10, 101, 588
OFFSET
1,3
COMMENTS
Column 1: 1,1,2,3,4,5,6,7,...
Column 2: 1+1, 1+2^2, 1+3^2, 1+4^2,...
Last term in row n: 2^(n-1)
Alternating row sums: 1,-1,1,-1,1,-1,1,-1,...; A033999
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...2
2...5....4
3...10...14...8
4...17...34...36...16
First three polynomials u(n,x): 1, 1 + 2x, 2 + 5x + 4x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209761 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209762 *)
CROSSREFS
Sequence in context: A275381 A283235 A209763 * A228526 A209745 A249620
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 14 2012
STATUS
approved