login
A033616
Coordination sequence T1 for Zeolite Code TSC.
3
1, 4, 9, 16, 25, 37, 53, 74, 99, 125, 151, 177, 205, 238, 279, 328, 381, 434, 483, 528, 574, 627, 690, 762, 840, 919, 995, 1068, 1140, 1214, 1294, 1382, 1477, 1577, 1681, 1787, 1892, 1995, 2096, 2197, 2303, 2419, 2546, 2681, 2819, 2954, 3082, 3205, 3329
OFFSET
0,2
COMMENTS
First 127 terms computed by Davide M. Proserpio using ToposPro.
LINKS
R. W. Grosse-Kunstleve, Table of n, a(n) for n = 0..1000(terms 0..127 from Davide M. Proserpio)
V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Applied Topological Analysis of Crystal Structures with the Program Package ToposPro, Cryst. Growth Des. 2014, 14, 3576-3586.
International Zeolite Association, Database of Zeolite Structures
Reticular Chemistry Structure Resource (RCSR), The tsc tiling (or net)
FORMULA
G.f.: (1 + x)^3 * (1 + x^2) * (1 - x + 2*x^2 - x^3 + 3*x^4 - x^5 + 4*x^6 - x^7 + 4*x^8 - x^9 + 4*x^10 - x^11 + 4*x^12 - x^13 + 3*x^14 - x^15 + 2*x^16 - x^17 + x^18) / ((1 - x)^3 * (1 - x + x^2 - x^3 + x^4) * (1 + x + x^2 + x^3 + x^4) * (1 + x^3 + x^6) * (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, Dec 19 2015
From N. J. A. Sloane, Feb 22 2018 (Start)
The following is a another conjectured recurrence, found by gfun, using the command rec:=gfun[listtorec](t1, a(n)); (where t1 is a list of the initial terms) suggested by Paul Zimmermann.
Note: this should not be used to extend the sequence.
0 = (-38*n^3-836*n^2-5351*n)*a(n)+(-76*n^2-798*n)*a(n+1)+(-38*n^3-912*n^2-6149*n)*a(n+2)+(-38*n^3-988*n^2-6947*n)*a(n+3)+(-38*n^3-1064*n^2-7745*n)*a(n+4)+(-38*n^3-1140*n^2 -8543*n)*a(n+5)+(-76*n^3-2052*n^2-14692*n)*a(n+6)
+ (-532*n^2-5586*n)*a(n+7)+(-76*n^3-2204*n^2-16288*n)*a(n+8)+(-684*n^2-7182*n)*a(n+9)+(-684*n^2 -7182*n)*a(n+10)+(-684*n^2-7182*n)*a(n+11)+(-684*n^2-7182*n)*a(n+12)+(76*n^3+ 988*n^2+3520*n)*a(n+13)+(-532*n^2-5586*n)*a(n+14)+(76*n^3+1140*n^2+5116*n)*a(n+15)
+ (38*n^3+456*n^2+1361*n)*a(n+16)+(38*n^3+532*n^2+2159*n)*a(n+17)+(38*n^3+608*n^2+2957*n)*a(n+18)+(38*n^3+684*n^2+3755*n)*a(n+19)+(-76*n^2-798*n)*a(n+20)+(38*n^3+760*n^2+4553*n)*a(n+21), with
a(0) = 1, a(1) = 4, a(2) = 9, a(3) = 16, a(4) = 25, a(5) = 37, a(6) = 53, a(7) = 74, a(8) = 99, a(9) = 125, a(10) = 151, a(11) = 177, a(12) = 205, a(13) = 238, a(14) = 279, a(15) = 328, a(16) = 381, a(17) = 434, a(18) = 483, a(19) = 528, a(20) = 574, a(21) = 627
(End)
CROSSREFS
Cf. A033617 (second type), A299902 (partial sums).
Sequence in context: A008087 A008088 A181640 * A265055 A011895 A033612
KEYWORD
nonn
STATUS
approved