OFFSET
0,2
COMMENTS
First 127 terms computed by Davide M. Proserpio using ToposPro.
LINKS
R. W. Grosse-Kunstleve, Table of n, a(n) for n = 0..1000(terms 0..127 from Davide M. Proserpio)
V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Applied Topological Analysis of Crystal Structures with the Program Package ToposPro, Cryst. Growth Des. 2014, 14, 3576-3586.
R. W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences
Sean A. Irvine, Generating Functions for Coordination Sequences of Zeolites, after Grosse-Kunstleve, Brunner, and Sloane
International Zeolite Association, Database of Zeolite Structures
Reticular Chemistry Structure Resource (RCSR), The tsc tiling (or net)
FORMULA
G.f.: (1 + x)^3 * (1 + x^2) * (1 - x + 2*x^2 - x^3 + 3*x^4 - x^5 + 4*x^6 - x^7 + 4*x^8 - x^9 + 4*x^10 - x^11 + 4*x^12 - x^13 + 3*x^14 - x^15 + 2*x^16 - x^17 + x^18) / ((1 - x)^3 * (1 - x + x^2 - x^3 + x^4) * (1 + x + x^2 + x^3 + x^4) * (1 + x^3 + x^6) * (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, Dec 19 2015
From N. J. A. Sloane, Feb 22 2018 (Start)
The following is a another conjectured recurrence, found by gfun, using the command rec:=gfun[listtorec](t1, a(n)); (where t1 is a list of the initial terms) suggested by Paul Zimmermann.
Note: this should not be used to extend the sequence.
0 = (-38*n^3-836*n^2-5351*n)*a(n)+(-76*n^2-798*n)*a(n+1)+(-38*n^3-912*n^2-6149*n)*a(n+2)+(-38*n^3-988*n^2-6947*n)*a(n+3)+(-38*n^3-1064*n^2-7745*n)*a(n+4)+(-38*n^3-1140*n^2 -8543*n)*a(n+5)+(-76*n^3-2052*n^2-14692*n)*a(n+6)
+ (-532*n^2-5586*n)*a(n+7)+(-76*n^3-2204*n^2-16288*n)*a(n+8)+(-684*n^2-7182*n)*a(n+9)+(-684*n^2 -7182*n)*a(n+10)+(-684*n^2-7182*n)*a(n+11)+(-684*n^2-7182*n)*a(n+12)+(76*n^3+ 988*n^2+3520*n)*a(n+13)+(-532*n^2-5586*n)*a(n+14)+(76*n^3+1140*n^2+5116*n)*a(n+15)
+ (38*n^3+456*n^2+1361*n)*a(n+16)+(38*n^3+532*n^2+2159*n)*a(n+17)+(38*n^3+608*n^2+2957*n)*a(n+18)+(38*n^3+684*n^2+3755*n)*a(n+19)+(-76*n^2-798*n)*a(n+20)+(38*n^3+760*n^2+4553*n)*a(n+21), with
a(0) = 1, a(1) = 4, a(2) = 9, a(3) = 16, a(4) = 25, a(5) = 37, a(6) = 53, a(7) = 74, a(8) = 99, a(9) = 125, a(10) = 151, a(11) = 177, a(12) = 205, a(13) = 238, a(14) = 279, a(15) = 328, a(16) = 381, a(17) = 434, a(18) = 483, a(19) = 528, a(20) = 574, a(21) = 627
(End)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved