login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266336 G.f. = b(2)*b(6)/(x^6-x^4+x^2-2*x+1), where b(k) = (1-x^k)/(1-x). 2
1, 4, 9, 16, 26, 42, 67, 104, 158, 238, 359, 542, 816, 1224, 1833, 2746, 4116, 6168, 9237, 13828, 20702, 30998, 46415, 69492, 104034, 155746, 233171, 349090, 522628, 782420, 1171349, 1753622, 2625352, 3930412, 5884193, 8809176, 13188162, 19743938, 29558555 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_5 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009.

Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010), 169-215.

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,0,-1).

MAPLE

gf:= b(2)*b(6)/(x^6-x^4+x^2-2*x+1):

b:= k->(1-x^k)/(1-x):

a:= n-> coeff(series(gf, x, n+1), x, n):

seq(a(n), n=0..40);

MATHEMATICA

b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[6]/(x^6 - x^4 + x^2 - 2 x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 29 2015 *)

PROG

(MAGMA) /* By definition: */ m:=40; R<x>:=PowerSeriesRing(Integers(), m); b:=func<k|(1-x^k)/(1-x)>; Coefficients(R!(b(2)*b(6)/(x^6-x^4+x^2-2*x+1))); // Bruno Berselli, Dec 29 2015

CROSSREFS

Cf. similar sequences listed in A265055.

Sequence in context: A299898 A009875 A265044 * A027365 A100216 A180306

Adjacent sequences:  A266333 A266334 A266335 * A266337 A266338 A266339

KEYWORD

nonn,easy

AUTHOR

Alois P. Heinz, Dec 27 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 04:50 EDT 2019. Contains 326072 sequences. (Running on oeis4.)