login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. = b(2)*b(6)/(x^6-x^4+x^2-2*x+1), where b(k) = (1-x^k)/(1-x).
2

%I #20 Sep 08 2022 08:46:15

%S 1,4,9,16,26,42,67,104,158,238,359,542,816,1224,1833,2746,4116,6168,

%T 9237,13828,20702,30998,46415,69492,104034,155746,233171,349090,

%U 522628,782420,1171349,1753622,2625352,3930412,5884193,8809176,13188162,19743938,29558555

%N G.f. = b(2)*b(6)/(x^6-x^4+x^2-2*x+1), where b(k) = (1-x^k)/(1-x).

%C This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_5 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

%H Colin Barker, <a href="/A266336/b266336.txt">Table of n, a(n) for n = 0..1000</a>

%H Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, <a href="https://arxiv.org/abs/0906.1596">The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains</a>, arXiv:0906.1596 [math.RT], 2009.

%H Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, <a href="http://dx.doi.org/10.1142/S1402925110000842">The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains</a>, Journal of Nonlinear Mathematical Physics 17.supp01 (2010), 169-215.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,0,-1).

%p gf:= b(2)*b(6)/(x^6-x^4+x^2-2*x+1):

%p b:= k->(1-x^k)/(1-x):

%p a:= n-> coeff(series(gf, x, n+1), x, n):

%p seq(a(n), n=0..40);

%t b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[6]/(x^6 - x^4 + x^2 - 2 x + 1), {x, 0, 40}], x] (* _Bruno Berselli_, Dec 29 2015 *)

%o (Magma) /* By definition: */ m:=40; R<x>:=PowerSeriesRing(Integers(), m); b:=func<k|(1-x^k)/(1-x)>; Coefficients(R!(b(2)*b(6)/(x^6-x^4+x^2-2*x+1))); // _Bruno Berselli_, Dec 29 2015

%Y Cf. similar sequences listed in A265055.

%K nonn,easy

%O 0,2

%A _Alois P. Heinz_, Dec 27 2015