login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117591
a(n) = 2^n + Fibonacci(n).
8
1, 3, 5, 10, 19, 37, 72, 141, 277, 546, 1079, 2137, 4240, 8425, 16761, 33378, 66523, 132669, 264728, 528469, 1055341, 2108098, 4212015, 8417265, 16823584, 33629457, 67230257, 134414146, 268753267, 537385141, 1074573864, 2148829917
OFFSET
0,2
COMMENTS
a(3n) is even if n>0. - Robert G. Wilson v, Sep 06 2002
3 divides a(8n+1) and a(8n-1). - Enrique Pérez Herrero, Dec 29 2010
FORMULA
G.f. (1-3*x^2)/((1-x-x^2)*(1-2*x)).
a(n) = A000079(n+1) - A099036(n) = A099036(n) + 2 * A000045(n). - Reinhard Zumkeller, Aug 15 2013
MATHEMATICA
Table[f=Fibonacci[n]; 2^n+f, {n, 1, 40, 1}] (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
CoefficientList[Series[(1-3x^2)/((1-x-x^2)(1-2x)), {x, 0, 35}], x] (* Vincenzo Librandi, Nov 02 2014 *)
PROG
(Haskell)
a117591 n = a117591_list !! n
a117591_list = zipWith (+) a000079_list a000045_list
-- Reinhard Zumkeller, Aug 15 2013
(Magma) [2^n+Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Nov 02 2014
(PARI) a(n)=2^n + fibonacci(n) \\ Charles R Greathouse IV, Oct 07 2016
(Sage) [2^n +fibonacci(n) for n in (0..40)] # G. C. Greubel, Jul 05 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved