login
A018908
Define sequence S(a_0,a_1) by a_{n+2} is least integer such that a_{n+2}/a_{n+1}>a_{n+1}/a_n for n >= 0. This is S(3,4).
2
3, 4, 6, 10, 17, 29, 50, 87, 152, 266, 466, 817, 1433, 2514, 4411, 7740, 13582, 23834, 41825, 73397, 128802, 226031, 396656, 696082, 1221538, 2143649, 3761841, 6601570, 11584947, 20330164, 35676950, 62608682, 109870577, 192809421, 338356946, 593775047
OFFSET
0,1
LINKS
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
MAPLE
a:= proc(n) option remember; `if`(n<2, [3, 4][n+1],
1 +floor(a(n-1)^2/a(n-2)))
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 05 2014
MATHEMATICA
a[n_] := a[n] = Switch[n, 0, 3, 1, 4, _, 1 + Floor[a[n-1]^2/a[n-2]]];
a /@ Range[0, 50] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A375382 A032408 A347567 * A353138 A052548 A232268
KEYWORD
nonn
AUTHOR
STATUS
approved