login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058896
a(n) = 4^n - 4.
7
-3, 0, 12, 60, 252, 1020, 4092, 16380, 65532, 262140, 1048572, 4194300, 16777212, 67108860, 268435452, 1073741820, 4294967292, 17179869180, 68719476732, 274877906940, 1099511627772, 4398046511100, 17592186044412, 70368744177660, 281474976710652, 1125899906842620
OFFSET
0,1
FORMULA
a(n) = A000302(n) - 4 = 4*a(n-1) + 12 = 4*A024036(n-1) = 12*A002450(n-1).
G.f.: 3*(5*x - 1)/(1 - x)/(1 - 4*x).
a(n) = A000918(n)*A052548(n). - Reinhard Zumkeller, Feb 14 2009
From Elmo R. Oliveira, Nov 16 2023 (Start)
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
E.g.f.: exp(4*x) - 4*exp(x). (End)
MAPLE
seq(4^n-4, n=0..25); # Muniru A Asiru, Mar 09 2018
MATHEMATICA
Array[4^# - 4 &, 26, 0] (* Michael De Vlieger, Feb 18 2018 *)
PROG
(PARI) a(n) = { 4^n - 4 } \\ Harry J. Smith, Jun 23 2009
(GAP) List([0..25], n->4^n-4); # Muniru A Asiru, Mar 09 2018
KEYWORD
sign,easy
AUTHOR
Henry Bottomley, Jan 08 2001
STATUS
approved