OFFSET
0,5
COMMENTS
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..560 (rows 0 <= n <= 1000).
EXAMPLE
Row 3 = {1,4,3,1}. The terms k in A025487 such that k <= A002110(3) are {1, 2, 4, 6, 8, 12, 16, 24, 30}. Of these, 1 has 0 distinct prime divisors, 4 {2,4,8,16} have 1 distinct prime divisor, 3 {6,12,24} have 2 distinct prime divisors, and 1 {30} has 3 distinct prime divisors.
Triangle begins:
0: 1
1: 1 1
2: 1 2 1
3: 1 4 3 1
4: 1 7 9 4 1
5: 1 11 21 15 5 1
6: 1 14 38 36 18 6 1
7: 1 18 64 79 53 23 7 1
8: 1 23 97 148 122 63 26 7 1
9: 1 27 140 258 251 157 76 30 7 1
10: 1 32 196 425 480 349 195 89 33 8 1
11: 1 37 261 655 853 700 443 228 102 37 9 1
12: 1 42 340 975 1438 1323 928 533 268 119 41 11 1
...
MATHEMATICA
Block[{nn = 12, f, w}, f[n_] := {{1}}~Join~Block[{lim = Product[Prime@ i, {i, n}], ww = NestList[Append[#, 1] &, {1}, n - 1], g}, g[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]]; Map[Block[{w = #, k = 1}, Sort@ Prepend[If[Length@ # == 0, #, #[[1]]], Product[Prime@ i, {i, Length@ w}]] &@ Reap[Do[If[# < lim, Sow[#]; k = 1, If[k >= Length@ w, Break[], k++]] &@ g@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1]]], {i, Infinity}]][[-1]]] &, ww]]; s = MapAt[Flatten, f@ nn, 1]; Array[Function[P, TakeWhile[Map[Count[#, _?(# <= P &)] &, s, {1}], # > 0 &]]@ Product[Prime@ i, {i, #}] &, nn + 1, 0]] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Michael De Vlieger, Mar 26 2019
STATUS
approved