login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027074
a(n) = Sum_{k=0..n-1} T(n,k) * T(n,2n-k), with T given by A027052.
2
1, 1, 4, 22, 93, 389, 1570, 6144, 23629, 89551, 335430, 1244762, 4583293, 16765087, 60980096, 220724896, 795540601, 2856541663, 10222762962, 36475315442, 129796579409, 460757642587, 1632012075912, 5768986242408
OFFSET
1,3
LINKS
MAPLE
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n, k)*T(n, 2*n-k), k=0..n-1), n=1..30); # G. C. Greubel, Nov 06 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, 2*n-k], {k, 0, n-1}], {n, 30}] (* G. C. Greubel, Nov 06 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n, k)*T(n, 2*n-k) for k in (0..n-1)) for n in (1..30)] # G. C. Greubel, Nov 06 2019
CROSSREFS
Sequence in context: A096167 A060453 A038382 * A036922 A340748 A036926
KEYWORD
nonn
STATUS
approved