login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326556
E.g.f. C(x)^2 = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!^2, where C(x) = cos( Integral 1/x * (Integral C(x) dx) dx ) is the e.g.f of A326551.
1
1, -4, 256, -67072, 49479680, -82817122304, 273099601739776, -1606512897507196928, 15659025634284911198208, -238894370882781809622384640, 5451274531297360096585324691456, -179296966081016547805899589056200704, 8242844472527700570663352676068232265728, -516102091343047279882754030489835708929277952, 43042816831864259208854418353099287467922680709120
OFFSET
0,2
COMMENTS
The e.g.f. C(x)^2 can be derived from the functions described by A326800, A326801, and A326802.
EXAMPLE
E.g.f.: C(x)^2 = 1 - 4*x^2/2!^2 + 256*x^4/4!^2 - 67072*x^6/6!^2 + 49479680*x^8/8!^2 - 82817122304*x^10/10!^2 + 273099601739776*x^12/12!^2 - 1606512897507196928*x^14/14!^2 + 15659025634284911198208*x^16/16!^2 - 238894370882781809622384640*x^18/18!^2 + 5451274531297360096585324691456*x^20/20!^2 + ...
where C(x) is the e.g.f. of A326551:
C(x) = 1 - 2*x^2/2!^2 + 56*x^4/4!^2 - 8336*x^6/6!^2 + 3985792*x^8/8!^2 - 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 - 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 - 4975999084909976839454720*x^18/18!^2 + 94178912073481319162642169856*x^20/20!^2 -+ ...
such that C(x) = cos( Integral 1/x * (Integral C(x) dx) dx ),
note also C(x*y) = cos( Integral Integral C(x*y) dx dy ).
PROG
(PARI)
{a(n) = my(C=1, S=x); for(i=1, 2*n,
S = intformal( C/x * intformal( C +x*O(x^(2*n)) ) );
C = 1 - intformal( S/x * intformal( C +x*O(x^(2*n)) ) ); ); (2*n)!^2*polcoeff(C^2, 2*n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 28 2019
STATUS
approved