The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326556 E.g.f. C(x)^2 = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!^2, where C(x) = cos( Integral 1/x * (Integral C(x) dx) dx ) is the e.g.f of A326551. 1
1, -4, 256, -67072, 49479680, -82817122304, 273099601739776, -1606512897507196928, 15659025634284911198208, -238894370882781809622384640, 5451274531297360096585324691456, -179296966081016547805899589056200704, 8242844472527700570663352676068232265728, -516102091343047279882754030489835708929277952, 43042816831864259208854418353099287467922680709120 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The e.g.f. C(x)^2 can be derived from the functions described by A326800, A326801, and A326802.
LINKS
EXAMPLE
E.g.f.: C(x)^2 = 1 - 4*x^2/2!^2 + 256*x^4/4!^2 - 67072*x^6/6!^2 + 49479680*x^8/8!^2 - 82817122304*x^10/10!^2 + 273099601739776*x^12/12!^2 - 1606512897507196928*x^14/14!^2 + 15659025634284911198208*x^16/16!^2 - 238894370882781809622384640*x^18/18!^2 + 5451274531297360096585324691456*x^20/20!^2 + ...
where C(x) is the e.g.f. of A326551:
C(x) = 1 - 2*x^2/2!^2 + 56*x^4/4!^2 - 8336*x^6/6!^2 + 3985792*x^8/8!^2 - 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 - 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 - 4975999084909976839454720*x^18/18!^2 + 94178912073481319162642169856*x^20/20!^2 -+ ...
such that C(x) = cos( Integral 1/x * (Integral C(x) dx) dx ),
note also C(x*y) = cos( Integral Integral C(x*y) dx dy ).
PROG
(PARI)
{a(n) = my(C=1, S=x); for(i=1, 2*n,
S = intformal( C/x * intformal( C +x*O(x^(2*n)) ) );
C = 1 - intformal( S/x * intformal( C +x*O(x^(2*n)) ) ); ); (2*n)!^2*polcoeff(C^2, 2*n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A223755 A223844 A122249 * A223795 A207275 A207473
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 28 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 23:25 EDT 2024. Contains 373468 sequences. (Running on oeis4.)