login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293065
Number of vertices of type D at level n of the hyperbolic Pascal pyramid PP_(4,5).
1
0, 0, 0, 1, 3, 7, 16, 38, 94, 239, 617, 1605, 4190, 10956, 28668, 75037, 196431, 514243, 1346284, 3524594, 9227482, 24157835, 63246005, 165580161, 433494458, 1134903192, 2971215096, 7778742073, 20365011099, 53316291199, 139583862472, 365435296190, 956722026070
OFFSET
0,5
LINKS
László Németh, Pascal pyramid in the space H^2 x R, arXiv:1701.06022 [math.CO], 2017 (4th line of Table 1).
FORMULA
a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) - a(n-4), n >= 5.
G.f.: x^3*(1 - 2*x) / ((1 - x)^2*(1 - 3*x + x^2)). - Colin Barker, Oct 07 2017
For n > 0, a(n) = Fibonacci(2*n - 5) + n - 3 = Sum_{k=1..n-2} Sum_{j=0..k-1} A001519(j). - Ehren Metcalfe, Apr 18 2019
MATHEMATICA
LinearRecurrence[{5, -8, 5, -1}, {0, 0, 0, 1, 3}, 33] (* a(0)=0 inserted by Georg Fischer, Apr 08 2019 *)
PROG
(PARI) concat(vector(3), Vec(x^3*(1 - 2*x) / ((1 - x)^2*(1 - 3*x + x^2)) + O(x^50))) \\ Colin Barker, Oct 07 2017
CROSSREFS
Sequence in context: A297498 A239040 A323225 * A211278 A364625 A196154
KEYWORD
nonn,easy
AUTHOR
Eric M. Schmidt, Sep 30 2017
STATUS
approved