OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
László Németh, Pascal pyramid in the space H^2 x R, arXiv:1701.06022 [math.CO], 2017 (6th line of Table 1).
Index entries for linear recurrences with constant coefficients, signature (5,-8,5,-1).
FORMULA
a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) - a(n-4), n >= 5.
From Colin Barker, Oct 07 2017: (Start)
G.f.: (1 - 2*x - x^2) / ((1 - x)^2*(1 - 3*x + x^2)).
a(n) = (2^(-1-n)*(-(-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5)) + 5*2^(2+n)*n)) / 5.
(End)
a(n) = 2*n + Fibonacci(2*n - 1). - Ehren Metcalfe, Apr 18 2019
MATHEMATICA
CoefficientList[ Series[(1 - 2x - x^2)/((x - 1)^2 (x^2 - 3x + 1)), {x, 0, 30}], x] (* or *)
LinearRecurrence[{5, -8, 5, -1}, {1, 3, 6, 11}, 31] (* Robert G. Wilson v, Feb 26 2018 *)
PROG
(PARI) Vec((1 - 2*x - x^2) / ((1 - x)^2*(1 - 3*x + x^2)) + O(x^40)) \\ Colin Barker, Oct 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric M. Schmidt, Sep 30 2017
STATUS
approved