login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, T(n,k) = hypergeometric_2F1([n-k+1, -k], [1], -1) for n>=0 and k>=0.
9

%I #44 Aug 21 2021 02:45:12

%S 1,1,2,1,3,4,1,4,8,8,1,5,13,20,16,1,6,19,38,48,32,1,7,26,63,104,112,

%T 64,1,8,34,96,192,272,256,128,1,9,43,138,321,552,688,576,256,1,10,53,

%U 190,501,1002,1520,1696,1280,512,1,11,64,253,743,1683,2972,4048

%N Triangle read by rows, T(n,k) = hypergeometric_2F1([n-k+1, -k], [1], -1) for n>=0 and k>=0.

%C Previous name was: Triangle of coefficients of polynomials v(n,x) jointly generated with A160232; see the Formula section.

%C Row sums: (1,3,8,...), even-indexed Fibonacci numbers.

%C Alt. row sums: (1,-1,2,-3,...), signed Fibonacci numbers.

%C v(n,2) = A107839(n), v(n,n) = 2^(n-1), v(n+1,n) = A001792(n),

%C v(n+2,n) = A049611, v(n+3,n) = A049612.

%C Subtriangle of the triangle T(n,k) given by (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 12 2012

%C Essentially triangle in A049600. - _Philippe Deléham_, Mar 23 2012

%H Reinhard Zumkeller, <a href="/A208341/b208341.txt">Rows n = 0..124 of triangle, flattened</a>

%F u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = u(n-1,x) + 2x*v(n-1,x), where u(1,x) = 1, v(1,x) = 1.

%F As DELTA-triangle with 0 <= k <= n: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Mar 12 2012

%F G.f.: (1-2*y*x+y*x^2)/(1-x-2*y*x+y*x^2). - _Philippe Deléham_, Mar 12 2012

%F T(n,k) = A106195(n-1,n-k), k = 1..n. - _Reinhard Zumkeller_, Dec 16 2013

%F From _Peter Bala_, Aug 11 2015: (Start)

%F The following remarks assume the row and column indexing start at 0.

%F T(n,k) = Sum_{i = 0..k} 2^(k-i)*binomial(n-k,i)*binomial(k,i) = Sum_{i = 0..k} binomial(n-k+i,i)*binomial(k,i).

%F Riordan array (1/(1 - x), x*(2 - x)/(1 - x)).

%F O.g.f. 1/(1 - (2*t + 1)*x + t*x^2) = 1 + (1 + 2*t)*x + (1 + 3*t + 4*t^2)*x^2 + ....

%F Read as a square array, this equals P * transpose(P^2), where P denotes Pascal's triangle A007318. (End)

%F For k<n, T(n,k) = T(n-1,k) + Sum_{i=1..k} T(n-i,k-i). - _Glen Whitney_, Aug 17 2021

%e First five rows:

%e 1;

%e 1, 2;

%e 1, 3, 4;

%e 1, 4, 8, 8;

%e 1, 5, 13, 20, 16;

%e First five polynomials v(n,x):

%e 1

%e 1 + 2x

%e 1 + 3x + 4x^2

%e 1 + 4x + 8x^2 + 8x^3

%e 1 + 5x + 13x^2 + 20x^3 + 16x^4

%e (1, 0, -1/2, 1/2, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins:

%e 1;

%e 1, 0;

%e 1, 2, 0;

%e 1, 3, 4, 0;

%e 1, 4, 8, 8, 0;

%e 1, 5, 13, 20, 16, 0;

%e 1, 6, 19, 38, 48, 32, 0;

%e Triangle in A049600 begins:

%e 0;

%e 0, 1;

%e 0, 1, 2;

%e 0, 1, 3, 4;

%e 0, 1, 4, 8, 8;

%e 0, 1, 5, 13, 20, 16;

%e 0, 1, 6, 19, 38, 48, 32;

%e ... - _Philippe Deléham_, Mar 23 2012

%p T := (n,k) -> hypergeom([n-k+1, -k],[1],-1):

%p seq(lprint(seq(simplify(T(n,k)),k=0..n)),n=0..7); # _Peter Luschny_, May 20 2015

%t u[1, x_] := 1; v[1, x_] := 1; z = 13;

%t u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];

%t v[n_, x_] := u[n - 1, x] + 2*x*v[n - 1, x];

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A160232 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A208341 *)

%o (Haskell)

%o a208341 n k = a208341_tabl !! (n-1) !! (k-1)

%o a208341_row n = a208341_tabl !! (n-1)

%o a208341_tabl = map reverse a106195_tabl

%o -- _Reinhard Zumkeller_, Dec 16 2013

%o (PARI) T(n,k) = sum(i = 0, k, 2^(k-i)*binomial(n-k,i)*binomial(k,i));

%o tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print();); \\ _Michel Marcus_, Aug 14 2015

%Y Cf. A160232, A000045, A049600, A106195.

%K nonn,tabl

%O 0,3

%A _Clark Kimberling_, Feb 25 2012

%E New name from _Peter Luschny_, May 20 2015

%E Offset corrected by _Joerg Arndt_, Aug 12 2015