login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181851
Triangle read by rows: T(n,k) = Sum_{c in composition(n,k)} lcm(c).
4
1, 2, 1, 3, 4, 1, 4, 8, 6, 1, 5, 20, 15, 8, 1, 6, 21, 50, 24, 10, 1, 7, 56, 66, 96, 35, 12, 1, 8, 60, 180, 160, 160, 48, 14, 1, 9, 96, 264, 432, 325, 244, 63, 16, 1, 10, 105, 510, 776, 892, 585, 350, 80, 18, 1, 11, 220, 567, 1704, 1835, 1668, 966, 480, 99, 20, 1
OFFSET
1,2
COMMENTS
Composition(n,k) is the set of the k-tuples of positive integers which sum to n (see A181842). Taking the example in A181842, T(6,2) = lcm(5,1) + lcm(4,2) + lcm(3,3) + lcm(2,4) + lcm(1,5) = 5+4+3+4+5 = 21.
LINKS
EXAMPLE
[1] 1
[2] 2 1
[3] 3 4 1
[4] 4 8 6 1
[5] 5 20 15 8 1
[6] 6 21 50 24 10 1
[7] 7 56 66 96 35 12 1
MAPLE
with(combstruct):
a181851_row := proc(n) local k, L, l, R, comp;
R := NULL;
for k from 1 to n do
L := 0;
comp := iterstructs(Composition(n), size=k):
while not finished(comp) do
l := nextstruct(comp);
L := L + ilcm(op(l));
od;
R := R, L;
od;
R end:
MATHEMATICA
c[n_, k_] := Permutations /@ IntegerPartitions[n, {k}] // Flatten[#, 1]&; t[n_, k_] := Total[LCM @@@ c[n, k]]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
CROSSREFS
T(2n,n) gives A373865.
Sequence in context: A361042 A072506 A188236 * A210231 A180378 A208341
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 07 2010
STATUS
approved