login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181851 Triangle read by rows: T(n,k) = Sum_{c in composition(n,k)} lcm(c). 3
1, 2, 1, 3, 4, 1, 4, 8, 6, 1, 5, 20, 15, 8, 1, 6, 21, 50, 24, 10, 1, 7, 56, 66, 96, 35, 12, 1, 8, 60, 180, 160, 160, 48, 14, 1, 9, 96, 264, 432, 325, 244, 63, 16, 1, 10, 105, 510, 776, 892, 585, 350, 80, 18, 1, 11, 220, 567, 1704, 1835, 1668, 966, 480, 99, 20, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Composition(n,k) is the set of the k-tuples of positive integers which sum to n (see A181842). Taking the example in A181842, T(6,2) = lcm(5,1) +lcm(4,2) +lcm(3,3) +lcm(2,4) +lcm(1,5) = 5+4+3+4+5 = 21.

LINKS

Alois P. Heinz, Rows n = 1..25, flattened

EXAMPLE

[1]   1

[2]   2    1

[3]   3    4    1

[4]   4    8    6    1

[5]   5   20   15    8    1

[6]   6   21   50   24   10    1

[7]   7   56   66   96   35   12   1

MAPLE

with(combstruct):

a181851_row := proc(n) local k, L, l, R, comp;

R := NULL;

for k from 1 to n do

   L := 0;

   comp := iterstructs(Composition(n), size=k):

   while not finished(comp) do

      l := nextstruct(comp);

      L := L + ilcm(op(l));

   od;

   R := R, L;

od;

R end:

MATHEMATICA

c[n_, k_] := Permutations /@ IntegerPartitions[n, {k}] // Flatten[#, 1]&; t[n_, k_] := Total[LCM @@@ c[n, k]]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Feb 05 2014 *)

CROSSREFS

Cf. A181849, A181850, A181853.

Sequence in context: A078925 A072506 A188236 * A210231 A180378 A208341

Adjacent sequences:  A181848 A181849 A181850 * A181852 A181853 A181854

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Dec 07 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 18 04:10 EDT 2014. Contains 240688 sequences.