login
A188236
T(n,k)=Number of nondecreasing arrangements of n numbers in -(n+k-2)..(n+k-2) with sum zero and not more than two numbers equal
15
1, 1, 2, 1, 3, 4, 1, 4, 7, 15, 1, 5, 12, 30, 58, 1, 6, 17, 52, 119, 245, 1, 7, 24, 81, 221, 527, 1082, 1, 8, 31, 121, 374, 1019, 2395, 5020, 1, 9, 40, 172, 598, 1818, 4818, 11376, 24040, 1, 10, 49, 234, 903, 3047, 8964, 23522, 55368, 118154, 1, 11, 60, 311, 1317, 4859
OFFSET
1,3
COMMENTS
Table starts
......1......1......1.......1.......1.......1.......1........1........1
......2......3......4.......5.......6.......7.......8........9.......10
......4......7.....12......17......24......31......40.......49.......60
.....15.....30.....52......81.....121.....172.....234......311......403
.....58....119....221.....374.....598.....903....1317.....1852.....2540
....245....527...1019....1818....3047....4859....7435....10994....15791
...1082...2395...4818....8964...15696...26123...41748....64370....96346
...5020..11376..23522...45225...81981..141519..234413...374820...581280
..24040..55368.117209..231596..432491..769915.1316060..2171675..3475284
.118154.275735.594789.1202495.2302608.4209720.7395049.12546170.20642874
LINKS
EXAMPLE
Some solutions for n=6 k=4
.-7...-8...-5...-8...-5...-7...-7...-3...-8...-8...-6...-6...-5...-7...-6...-5
.-4...-8...-3...-5...-5...-7...-4...-3...-4...-8...-6...-4...-4...-4...-2...-5
..0...-4...-2...-4...-1...-1....1....1....0....0....2...-4....1....0...-1....1
..2....6....0....3....1....0....2....1....3....2....2....2....1....1...-1....1
..3....7....4....7....3....7....2....2....4....7....3....4....3....3....3....4
..6....7....6....7....7....8....6....2....5....7....5....8....4....7....7....4
CROSSREFS
Row 3 is A074148(n+1)
Sequence in context: A078925 A361042 A072506 * A181851 A210231 A180378
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 24 2011
STATUS
approved