login
A122588
Expansion of x/(1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).
6
1, 9, 53, 260, 1156, 4845, 19551, 76912, 297275, 1134705, 4292145, 16128061, 60304951, 224660626, 834641671, 3094322026, 11453607152, 42344301686, 156404021389, 577291806894, 2129654436910, 7853149169635, 28949515515376, 106692395098433, 393137817645838
OFFSET
1,2
COMMENTS
Essentially the same as A005025. - R. J. Mathar, Aug 02 2008
FORMULA
G.f.: x/(1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).
MATHEMATICA
m = 10; p[x_]:= ExpandAll[x^m*ChebyshevU[m, 1/x]]; Table[SeriesCoefficient[ Series[2^(n+m-1)*x/p[x], {x, 0, 30}], n], {n, 1, 30, 2}]
PROG
(Magma) I:=[1, 9, 53, 260, 1156]; [n le 5 select I[n] else 9*Self(n-1) -28*Self(n-2) +35*Self(n-3) -15*Self(n-4) +Self(n-5): n in [1..30]]; // G. C. Greubel, Nov 29 2021
(Sage)
def A122588_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x/(1-9*x+28*x^2-35*x^3+15*x^4-x^5) ).list()
a=A122588_list(31); a[1:] # G. C. Greubel, Nov 29 2021
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
EXTENSIONS
Generating function corrected by R. J. Mathar, Jul 09 2009
New name (using g.f.) and editing by Joerg Arndt, Feb 12 2015
STATUS
approved