login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122586
Leading digit of n expressed in base 3.
8
1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
Values 1 and 2 appear alternately and each time in runs whose lengths are the powers of 3. Each power of 3 is used twice: once for a run of 1's and then for a run of 2's.
LINKS
FORMULA
a(n) = floor(n/(3^floor(log(n)/log(3)))).
From Robert Israel, Mar 15 2017: (Start)
a(3n) = a(3n+1) = a(3n+2) = a(n).
G.f.: g(x) satisfies g(x) = x + 2 x^2 + (1+x+x^2) g(x^3). (End)
EXAMPLE
a(1) = 1/(3^0) = 1.
MAPLE
seq( evalf(floor(n/ (3^floor(log[3](n))))), n=1..500);
MATHEMATICA
Table[IntegerDigits[n, 3][[1]], {n, 110}] (* or *) Table[{PadRight[{}, 3^k, 1], PadRight[ {}, 3^k, 2]}, {k, 0, 4}]//Flatten (* Harvey P. Dale, Mar 12 2023 *)
CROSSREFS
Sequence in context: A145705 A029339 A029364 * A079487 A229122 A069010
KEYWORD
easy,nonn,base
AUTHOR
Peter C. Heinig (algorithms(AT)gmx.de), Oct 20 2006
EXTENSIONS
Name changed by Franklin T. Adams-Watters, Sep 29 2011
STATUS
approved