login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145705
Expansion of q^(1/4) * (eta(q^8) * eta(q^10) - eta(q^2) * eta(q^40)) / (eta(q^4) * eta(q^20)) in powers of q.
6
1, -1, 0, 1, 1, 0, 0, 1, 1, -1, -1, 1, 2, -1, -1, 1, 2, -2, -1, 2, 3, -3, -2, 3, 4, -3, -2, 4, 5, -4, -4, 5, 6, -6, -5, 6, 8, -7, -6, 8, 11, -10, -8, 11, 13, -11, -10, 13, 16, -15, -14, 17, 20, -18, -17, 20, 24, -23, -21, 25, 31, -29, -26, 32, 37, -34, -32, 39, 44, -42, -41, 47, 54, -52, -49, 56, 64, -62, -59, 68, 79, -77, -72
OFFSET
0,13
LINKS
FORMULA
Denoted by "(160~a)" in Simon Norton's replicable function list.
G.f. is a period 1 Fourier series which satisfies f(-1 / (1280 t)) = f(t) where q = exp(2 Pi i t).
EXAMPLE
1/q - q^3 + q^11 + q^15 + q^27 + q^31 - q^35 - q^39 + q^43 + 2*q^47 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q^8]*QP[q^10]-q*QP[q^2]*QP[q^40])/(QP[q^4]* QP[q^20]) + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A) * eta(x^10 + A) - x * eta(x^2 + A) * eta(x^40 + A)) / (eta(x^4 + A) * eta(x^20 + A)), n))}
CROSSREFS
(-1)^n * A145704(n) = a(n). A145706(n) = a(2*n). - A145707(n) = a(2*n + 1).
Sequence in context: A145702 A145704 A139632 * A029339 A029364 A122586
KEYWORD
sign
AUTHOR
Michael Somos, Oct 17 2008, Nov 11 2008, Jan 21 2009
STATUS
approved