OFFSET
0,8
COMMENTS
Row sums are Fibonacci numbers A000045. - Roger L. Bagula, Oct 07 2006
This is the second kind of Whitney numbers, which count elements, not to be confused with the first kind, which sum Mobius functions. - Thomas Zaslavsky, May 07 2008
LINKS
Giovanni Resta, Rows n=0..139 of triangle, flattened
Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras, arXiv:2012.14991 [math.CO], 2020.
A. Khrabrov and K. Kokhas, Points on a line, shoelace and dominoes, arXiv:1505.06309 [math.CO], (23-May-2015).
Sophie Morier-Genoud and Valentin Ovsienko, q-deformed rationals and q-continued fractions, arXiv:1812.00170 [math.CO], 2018-2020.
Sophie Morier-Genoud and Valentin Ovsienko, On q-deformed real numbers, arXiv:1908.04365 [math.QA], 2019.
Sophie Morier-Genoud and Valentin Ovsienko, q-deformed rationals and q-continued fractions, (2019) [math].
Sophie Morier-Genoud and Valentin Ovsienko, Quantum real numbers and q-deformed Conway-Coxeter friezes, arXiv:2011.10809 [math.QA], 2020.
E. Munarini and N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.
Valentin Ovsienko, Modular invariant q-deformed numbers: first steps, 2023.
FORMULA
Define polynomials by: if k is odd then p(k, x) = x*p(k - 1, x) + p(k - 2, x); if k is even then: p(k, x) = p(k - 1, x) + x^2*p(k - 2, x). Triangle gives array of coefficients. - Roger L. Bagula, Oct 07 2006
EXAMPLE
Triangle begins:
{1},
{1, 1},
{1, 1, 1},
{1, 2, 1, 1},
{1, 2, 2, 2, 1},
{1, 3, 3, 3, 2, 1},
{1, 3, 4, 5, 4, 3, 1},
{1, 4, 6, 7, 7, 5, 3, 1},
{1, 4, 7, 10, 11, 10, 7, 4, 1},
{1, 5, 10, 14, 17, 16, 13, 8, 4, 1},
{1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1}
MATHEMATICA
p[0, x] = 1; p[1, x] = x + 1; p[k_, x_] := p[k, x] = Expand@ If[Mod[k, 2] == 1, x*p[k - 1, x] + p[k - 2, x], p[k - 1, x] + x^2*p[k - 2, x]]; Flatten[ Table[CoefficientList[p[n, x], x], {n, 0, 10}]] (* Roger L. Bagula, Oct 07 2006 *)
T[ n_, k_] := (T[n, k] = Which[k<0 || k>n, 0, k==0, 1, True, T[n-1, k-Mod[n, 2]] + T[n-2, k-Mod[n+1, 2]*2]]); (* Michael Somos, Dec 12 2023 *)
PROG
(PARI) {T(n, k) = if(k<0 || k>n, 0, k==0, 1, T(n-1, k-(n%2)) + T(n-2, k-(n+1)%2*2))}; /* Michael Somos, Dec 12 2023 */
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 19 2003
EXTENSIONS
Mma program editing and a(67)-a(79) from Giovanni Resta, May 26 2015
STATUS
approved