login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079487
Triangle read by rows giving Whitney numbers T(n,k) of Fibonacci lattices.
6
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 3, 2, 1, 1, 3, 4, 5, 4, 3, 1, 1, 4, 6, 7, 7, 5, 3, 1, 1, 4, 7, 10, 11, 10, 7, 4, 1, 1, 5, 10, 14, 17, 16, 13, 8, 4, 1, 1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1, 1, 6, 15, 25, 35, 40, 39, 32, 22, 12, 5, 1, 1
OFFSET
0,8
COMMENTS
Row sums are Fibonacci numbers A000045. - Roger L. Bagula, Oct 07 2006
This is the second kind of Whitney numbers, which count elements, not to be confused with the first kind, which sum Mobius functions. - Thomas Zaslavsky, May 07 2008
LINKS
Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras, arXiv:2012.14991 [math.CO], 2020.
A. Khrabrov and K. Kokhas, Points on a line, shoelace and dominoes, arXiv:1505.06309 [math.CO], (23-May-2015).
Sophie Morier-Genoud and Valentin Ovsienko, q-deformed rationals and q-continued fractions, arXiv:1812.00170 [math.CO], 2018-2020.
Sophie Morier-Genoud and Valentin Ovsienko, On q-deformed real numbers, arXiv:1908.04365 [math.QA], 2019.
Sophie Morier-Genoud and Valentin Ovsienko, q-deformed rationals and q-continued fractions, (2019) [math].
Sophie Morier-Genoud and Valentin Ovsienko, Quantum real numbers and q-deformed Conway-Coxeter friezes, arXiv:2011.10809 [math.QA], 2020.
E. Munarini and N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.
FORMULA
Define polynomials by: if k is odd then p(k, x) = x*p(k - 1, x) + p(k - 2, x); if k is even then: p(k, x) = p(k - 1, x) + x^2*p(k - 2, x). Triangle gives array of coefficients. - Roger L. Bagula, Oct 07 2006
EXAMPLE
Triangle begins:
{1},
{1, 1},
{1, 1, 1},
{1, 2, 1, 1},
{1, 2, 2, 2, 1},
{1, 3, 3, 3, 2, 1},
{1, 3, 4, 5, 4, 3, 1},
{1, 4, 6, 7, 7, 5, 3, 1},
{1, 4, 7, 10, 11, 10, 7, 4, 1},
{1, 5, 10, 14, 17, 16, 13, 8, 4, 1},
{1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1}
MATHEMATICA
p[0, x] = 1; p[1, x] = x + 1; p[k_, x_] := p[k, x] = Expand@ If[Mod[k, 2] == 1, x*p[k - 1, x] + p[k - 2, x], p[k - 1, x] + x^2*p[k - 2, x]]; Flatten[ Table[CoefficientList[p[n, x], x], {n, 0, 10}]] (* Roger L. Bagula, Oct 07 2006 *)
T[ n_, k_] := (T[n, k] = Which[k<0 || k>n, 0, k==0, 1, True, T[n-1, k-Mod[n, 2]] + T[n-2, k-Mod[n+1, 2]*2]]); (* Michael Somos, Dec 12 2023 *)
PROG
(PARI) {T(n, k) = if(k<0 || k>n, 0, k==0, 1, T(n-1, k-(n%2)) + T(n-2, k-(n+1)%2*2))}; /* Michael Somos, Dec 12 2023 */
CROSSREFS
Largest element in each row gives A077419.
Sequence in context: A029339 A029364 A122586 * A229122 A069010 A353332
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 19 2003
EXTENSIONS
Mma program editing and a(67)-a(79) from Giovanni Resta, May 26 2015
STATUS
approved