login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353332
Number of divisors d of n for which both A001222(d) and A056239(d) are even.
5
1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 3, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 1, 2, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 3, 1, 2, 1, 2, 2, 2, 2, 1, 1, 3, 1, 2, 3, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 1, 2, 2, 1, 2, 1, 5, 3, 2, 1, 4, 2, 1, 2, 4, 1, 4, 2, 3, 1, 2, 1, 3, 1, 2, 2, 5, 1, 2, 1, 2, 2
OFFSET
1,4
COMMENTS
Number of terms of A340784 that divide n.
FORMULA
a(n) = Sum_{d|n} A353331(d).
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.
EXAMPLE
Of the 9 divisors of 36, only divisors 1, 4, 9 and 36 satisfy the condition, therefore a(36) = 4.
PROG
(PARI)
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
A353331(n) = ((!(bigomega(n)%2)) && (!(A056239(n)%2)));
A353332(n) = sumdiv(n, d, A353331(d));
CROSSREFS
Inverse Möbius transform of A353331. Cf. also A353333, A353334.
Differs from A353362 for the first time at n=30, where a(30) = 2, while A353362(30) = 3.
Sequence in context: A079487 A229122 A069010 * A353362 A256122 A087048
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 14 2022
STATUS
approved