login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122589
Expansion of 1/(1 - 11*x + 45*x^2 - 84*x^3 + 70*x^4 - 21*x^5 + x^6).
2
1, 11, 76, 425, 2109, 9709, 42504, 179630, 740025, 2991495, 11920740, 46981740, 183579396, 712493461, 2750450981, 10572046555, 40495806764, 154683305139, 589504177384, 2242448706435, 8517201473375, 32309383853565
OFFSET
0,2
COMMENTS
Previous name was: Sum_{n >= 0} a(n)*x^(2n) / 4^(n+6) = 1/(4096 - 11264*x^2 + 11520*x^4 - 5376*x^6 + 1120*x^8 - 84*x^10 + x^12).
Suggested by study of polynomials associated with the regular 13-gon.
FORMULA
G.f.: 1/(1 - 11*x + 45*x^2 - 84*x^3 + 70*x^4 - 21*x^5 + x^6). - Colin Barker, Oct 16 2013
MAPLE
A122589:= proc(n) coeftayl(1/(4096-11264*x^2+11520*x^4-5376*x^6+1120*x^8-84*x^10 +x^12), x=0, 2*n); %*2^(2*n+12); end: seq(A122589(n), n=0..30); # R. J. Mathar, Sep 21 2007
MATHEMATICA
m=12; p[x_]:= ExpandAll[x^m*ChebyshevU[m, 1/x]]; Table[ SeriesCoefficient[ Series[2^(n+m-1)*x/p[x], {x, 0, 30}], n], {n, 1, 30, 2}]
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-11*x+45*x^2 -84*x^3+70*x^4-21*x^5+x^6) )); // G. C. Greubel, Nov 29 2021
(Sage)
def A122589_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-11*x+45*x^2-84*x^3+70*x^4-21*x^5+x^6) ).list()
A122589_list(30) # G. C. Greubel, Nov 29 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Oct 02 2006
More terms from R. J. Mathar, Sep 21 2007
New name from Colin Barker, Oct 16 2013
STATUS
approved