OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
A. J. Guttmann, Indicators of solvability for lattice models, Discrete Math., 217 (2000), 167-189.
D. Hansel et al., Analytical properties of the anisotropic cubic Ising model, J. Stat. Phys., 48 (1987), 69-80.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: (1 +8*x +10*x^2 +8*x^3 +x^4)/(1-x)^4.
From Colin Barker, Dec 09 2016: (Start)
a(n) = 2*n*(11 + 7*n^2)/3 for n>0.
a(0)=1, a(1)=12, a(2)=52, a(3)=148, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. (End)
E.g.f.: (3 + 2*x*(18 + 21*x + 7*x^2)*exp(x))/3. - G. C. Greubel, Jul 31 2019
MATHEMATICA
CoefficientList[Series[(1+8*x+10*x^2+8*x^3+x^4)/(1-x)^4, {x, 0, 40}], x] (* or *) a[0]=1; a[n_]:= 2*n*(11+7*n^2)/3; Table[a[n], {n, 0, 40}] (* Indranil Ghosh, Feb 24 2017 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 12, 52, 148, 328}, 50] (* Harvey P. Dale, Nov 24 2024 *)
PROG
(PARI) Vec((1+8*x+10*x^2+8*x^3+x^4)/(1-x)^4 + O(x^40)) \\ Colin Barker, Dec 09 2016
(PARI) vector(40, n, n--; if(n==0, 1, 2*n*(11+7*n^2)/3)) \\ G. C. Greubel, Jul 31 2019
(Python)
def A054410(n):
if n == 0: return 1
return 2*(n*(11 + 7*n**2))/3 # Indranil Ghosh, Feb 24 2017
(Magma) [1] cat [2*n*(11+7*n^2)/3: n in [1..40]]; // G. C. Greubel, Jul 31 2019
(Sage) [1]+[2*n*(11+7*n^2)/3 for n in (1..40)] # G. C. Greubel, Jul 31 2019
(GAP) Concatenation([1], List([1..40], n-> 2*n*(11+7*n^2)/3)); # G. C. Greubel, Jul 31 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 09 2000
STATUS
approved