The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253131 Number of length 3+2 0..n arrays with the sum of medians of adjacent triples multiplied by some arrangement of +-1 equal to zero. 1

%I #7 Dec 09 2018 06:43:26

%S 16,90,281,673,1356,2452,4083,6409,9584,13806,19261,26185,34796,45368,

%T 58151,73457,91568,112834,137569,166161,198956,236380,278811,326713,

%U 380496,440662,507653,582009,664204,754816,854351,963425,1082576,1212458

%N Number of length 3+2 0..n arrays with the sum of medians of adjacent triples multiplied by some arrangement of +-1 equal to zero.

%H R. H. Hardin, <a href="/A253131/b253131.txt">Table of n, a(n) for n = 1..121</a>

%F Empirical: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7).

%F Empirical for n mod 2 = 0: a(n) = (35/48)*n^4 + (47/8)*n^3 + (73/12)*n^2 + 3*n + 1.

%F Empirical for n mod 2 = 1: a(n) = (35/48)*n^4 + (47/8)*n^3 + (73/12)*n^2 + (21/8)*n + (11/16).

%F Empirical g.f.: x*(16 + 42*x + 27*x^2 - 12*x^4 - 4*x^5 + x^6) / ((1 - x)^5*(1 + x)^2). - _Colin Barker_, Dec 09 2018

%e Some solutions for n=10:

%e .10....8....7....2....3....0....4...10....3....7....0....9....3....5....5...10

%e ..0....1....3....9....3....4....1....4....1....0....1....1....0....0...10....6

%e ..4...10....3....1....6....3....1....0....4....7....1....4....1....1....5....1

%e ..8....0....7....1....0...10....5....8....0....0....2....9....0....2...10....5

%e ..8....9....6....4....7....7....2....8....4...10....4....8....7....3....3....0

%Y Row 3 of A253129.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 27 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 18:06 EDT 2024. Contains 372840 sequences. (Running on oeis4.)