Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 13 2023 02:55:33
%S 0,1,16,90,320,875,2016,4116,7680,13365,22000,34606,52416,76895,
%T 109760,153000,208896,280041,369360,480130,616000,781011,979616,
%U 1216700,1497600,1828125,2214576,2663766,3183040,3780295,4464000,5243216,6127616,7127505,8253840
%N Product of n^2 and n-th tetrahedral number: a(n) = n^3*(n+1)*(n+2)/6.
%C If n is divisible by 10, then a(n) is divisible by 1000.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F From _Alois P. Heinz_, Feb 10 2023: (Start)
%F a(n) = Sum_{k=0..n} k^2 * A061579(n,k).
%F G.f.: x*(x+1)*(9*x+1)/(x-1)^6. (End)
%F From _Amiram Eldar_, Feb 13 2023: (Start)
%F Sum_{n>=1} 1/a(n) = 39/8 - 3*Pi^2/4 + 3*zeta(3).
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 12*log(2) - 51/8 - 3*Pi^2/8 + 9*zeta(3)/4. (End)
%e a(25) = n^3*(n+1)*(n+2)/6 = 25^3*(25+1)*(25+2)/6 = 15625*26*27/6 = 15625*13*9 = 1828125.
%p with(combinat):a:=n->sum(sum(sum(binomial(n+2,2)/3, j=1..n), k=1..n),m=1..n): seq(a(n), n=0..31); # _Zerinvary Lajos_, May 30 2007
%t a[n_] := n^3*(n+1)*(n+2)/6; Array[a, 35, 0] (* _Amiram Eldar_, Feb 13 2023 *)
%Y Cf. A000290, A000292, A061579.
%K easy,nonn
%O 0,3
%A Brandon Ang (xyz1236(AT)verizon.net), Jun 28 2006