Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Jun 06 2024 23:24:33
%S 0,2,1,5,4,3,9,8,7,6,14,13,12,11,10,20,19,18,17,16,15,27,26,25,24,23,
%T 22,21,35,34,33,32,31,30,29,28,44,43,42,41,40,39,38,37,36,54,53,52,51,
%U 50,49,48,47,46,45,65,64,63,62,61,60,59,58,57,56,55,77,76,75,74,73,72,71,70,69,68,67,66
%N Reverse one number (0), then two numbers (2,1), then three (5,4,3), then four (9,8,7,6), etc.
%C A self-inverse permutation of the nonnegative numbers.
%C a(n) is the smallest nonnegative integer not yet in the sequence such that n + a(n) is one less than a square. - _Franklin T. Adams-Watters_, Apr 06 2009
%C From _Michel Marcus_, Mar 01 2021: (Start)
%C Array T(n,k) = (n+k)^2/2 + (n+3*k)/2 for n,k >= 0 read by descending antidiagonals.
%C Array T(n,k) = (n+k)^2/2 + (3*n+k)/2 for n,k >= 0 read by ascending antidiagonals. (End)
%H Harry J. Smith, <a href="/A061579/b061579.txt">Table of n, a(n) for n = 0..1000</a>
%H Madeline Brandt and Kåre Schou Gjaldbæk, <a href="https://arxiv.org/abs/2102.13578">Classification of Quadratic Packing Polynomials on Sectors of R^2</a>, arXiv:2102.13578 [math.NT], 2021. See Figure 9 p. 17.
%H Gennady Eremin, <a href="https://arxiv.org/abs/2405.16143">Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant</a>, arXiv:2405.16143 [math.CO], 2024.
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F a(n) = floor(sqrt(2n+1)-1/2)*floor(sqrt(2n+1)+3/2) - n = A005563(A003056(n)) - n.
%F Row (or antidiagonal) n = 0, 1, 2, ... contains the integers from A000217(n) to A000217(n+1)-1 in reverse order (for diagonals, "reversed" with respect to the canonical "falling" order, cf. A001477/table). - _M. F. Hasler_, Nov 09 2021
%F From _Alois P. Heinz_, Feb 10 2023: (Start)
%F T(n,k) = n*(n+3)/2 - k.
%F Sum_{k=0..n} k * T(n,k) = A002419(n).
%F Sum_{k=0..n} k^2 * T(n,k) = A119771(n).
%F Sum_{k=0..n} (-1)^k * T(n,k) = A226725(n). (End)
%e Read as a triangle, the sequence is:
%e 0
%e 2 1
%e 5 4 3
%e 9 8 7 6
%e 14 13 12 11 10
%e (...)
%e As an infinite square matrix (cf. the "table" link, 2nd paragraph) it reads:
%e 0 2 5 9 14 20 ...
%e 1 4 8 13 19 22 ...
%e 3 7 12 18 23 30 ...
%e 6 11 17 24 31 39 ...
%e (...)
%p T:= (n,k)-> n*(n+3)/2-k:
%p seq(seq(T(n,k), k=0..n), n=0..12); # _Alois P. Heinz_, Feb 10 2023
%t Module[{nn=20},Reverse/@TakeList[Range[0,(nn(nn+1))/2],Range[nn]]]// Flatten (* Requires Mathematica version 11 or later *) (* _Harvey P. Dale_, Jul 06 2018 *)
%o (PARI) A061579_row(n)=vector(n+=1, j, n*(n+1)\2-j)
%o A061579_upto(n)=concat([A061579_row(r)|r<-[0..sqrtint(2*n)]]) \\ yields approximately n terms: actual number differs by less than +- sqrt(n). - _M. F. Hasler_, Nov 09 2021
%o (Python)
%o from math import isqrt
%o def A061579(n): return (r:=isqrt((n<<3)+1)-1>>1)*(r+2)-n # _Chai Wah Wu_, Feb 10 2023
%Y Fixed points are A046092.
%Y Row sums give A027480.
%Y Each reversal involves the numbers from A000217 through to A000096.
%Y Cf. A038722. Transpose of A001477.
%Y Cf. A002419, A119771, A226725.
%K nonn,tabl
%O 0,2
%A _Henry Bottomley_, May 21 2001