login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341907
T(n, k) is the result of replacing 2^e with k^e in the binary expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.
2
0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 1, 3, 3, 1, 0, 0, 2, 4, 4, 4, 1, 0, 1, 2, 5, 9, 5, 5, 1, 0, 0, 3, 6, 10, 16, 6, 6, 1, 0, 1, 1, 7, 12, 17, 25, 7, 7, 1, 0, 0, 2, 8, 13, 20, 26, 36, 8, 8, 1, 0, 1, 2, 9, 27, 21, 30, 37, 49, 9, 9, 1, 0, 0, 3, 10, 28, 64, 31, 42, 50, 64, 10, 10, 1, 0
OFFSET
0,12
COMMENTS
For any n >= 0, the n-th row, k -> T(n, k), corresponds to a polynomial in k with coefficients in {0, 1}.
For any k > 1, the k-th column, n -> T(n, k), corresponds to sums of distinct powers of k.
FORMULA
T(n, n) = A104258(n).
T(n, 0) = A000035(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A005836(n).
T(n, 4) = A000695(n).
T(n, 5) = A033042(n).
T(n, 6) = A033043(n).
T(n, 7) = A033044(n).
T(n, 8) = A033045(n).
T(n, 9) = A033046(n).
T(n, 10) = A007088(n).
T(n, 11) = A033047(n).
T(n, 12) = A033048(n).
T(n, 13) = A033049(n).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^2.
T(5, k) = k^2 + 1 = A002522(k).
T(6, k) = k^2 + k = A002378(k).
T(7, k) = k^2 + k + 1 = A002061(k).
T(8, k) = k^3.
T(9, k) = k^3 + 1 = A001093(k).
T(10, k) = k^3 + k = A034262(k).
T(11, k) = k^3 + k + 1 = A071568(k).
T(12, k) = k^3 + k^2 = A011379(k).
T(13, k) = k^3 + k^2 + 1 = A098547(k).
T(14, k) = k^3 + k^2 + k = A027444(k).
T(15, k) = k^3 + k^2 + k + 1 = A053698(k).
T(16, k) = k^4 = A000583(k).
T(17, k) = k^4 + 1 = A002523(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).
EXAMPLE
Array T(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12
---+-------------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0 0 0
1| 1 1 1 1 1 1 1 1 1 1 1 1 1
2| 0 1 2 3 4 5 6 7 8 9 10 11 12
3| 1 2 3 4 5 6 7 8 9 10 11 12 13
4| 0 1 4 9 16 25 36 49 64 81 100 121 144
5| 1 2 5 10 17 26 37 50 65 82 101 122 145
6| 0 2 6 12 20 30 42 56 72 90 110 132 156
7| 1 3 7 13 21 31 43 57 73 91 111 133 157
8| 0 1 8 27 64 125 216 343 512 729 1000 1331 1728
9| 1 2 9 28 65 126 217 344 513 730 1001 1332 1729
10| 0 2 10 30 68 130 222 350 520 738 1010 1342 1740
11| 1 3 11 31 69 131 223 351 521 739 1011 1343 1741
12| 0 2 12 36 80 150 252 392 576 810 1100 1452 1872
PROG
(PARI) T(n, k) = { my (v=0, e); while (n, n-=2^e=valuation(n, 2); v+=k^e); v }
KEYWORD
nonn,tabl,base
AUTHOR
Rémy Sigrist, Jun 04 2021
STATUS
approved