OFFSET
0,12
COMMENTS
For any n >= 0, the n-th row, k -> T(n, k), corresponds to a polynomial in k with coefficients in {0, 1}.
For any k > 1, the k-th column, n -> T(n, k), corresponds to sums of distinct powers of k.
LINKS
FORMULA
T(n, n) = A104258(n).
T(n, 0) = A000035(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A005836(n).
T(n, 4) = A000695(n).
T(n, 5) = A033042(n).
T(n, 6) = A033043(n).
T(n, 7) = A033044(n).
T(n, 8) = A033045(n).
T(n, 9) = A033046(n).
T(n, 10) = A007088(n).
T(n, 11) = A033047(n).
T(n, 12) = A033048(n).
T(n, 13) = A033049(n).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^2.
T(5, k) = k^2 + 1 = A002522(k).
T(6, k) = k^2 + k = A002378(k).
T(7, k) = k^2 + k + 1 = A002061(k).
T(8, k) = k^3.
T(9, k) = k^3 + 1 = A001093(k).
T(10, k) = k^3 + k = A034262(k).
T(11, k) = k^3 + k + 1 = A071568(k).
T(12, k) = k^3 + k^2 = A011379(k).
T(13, k) = k^3 + k^2 + 1 = A098547(k).
T(14, k) = k^3 + k^2 + k = A027444(k).
T(15, k) = k^3 + k^2 + k + 1 = A053698(k).
T(16, k) = k^4 = A000583(k).
T(17, k) = k^4 + 1 = A002523(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).
EXAMPLE
Array T(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12
---+-------------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0 0 0
1| 1 1 1 1 1 1 1 1 1 1 1 1 1
2| 0 1 2 3 4 5 6 7 8 9 10 11 12
3| 1 2 3 4 5 6 7 8 9 10 11 12 13
4| 0 1 4 9 16 25 36 49 64 81 100 121 144
5| 1 2 5 10 17 26 37 50 65 82 101 122 145
6| 0 2 6 12 20 30 42 56 72 90 110 132 156
7| 1 3 7 13 21 31 43 57 73 91 111 133 157
8| 0 1 8 27 64 125 216 343 512 729 1000 1331 1728
9| 1 2 9 28 65 126 217 344 513 730 1001 1332 1729
10| 0 2 10 30 68 130 222 350 520 738 1010 1342 1740
11| 1 3 11 31 69 131 223 351 521 739 1011 1343 1741
12| 0 2 12 36 80 150 252 392 576 810 1100 1452 1872
PROG
(PARI) T(n, k) = { my (v=0, e); while (n, n-=2^e=valuation(n, 2); v+=k^e); v }
CROSSREFS
KEYWORD
AUTHOR
Rémy Sigrist, Jun 04 2021
STATUS
approved