login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098547
a(n) = n^3 + n^2 + 1.
11
1, 3, 13, 37, 81, 151, 253, 393, 577, 811, 1101, 1453, 1873, 2367, 2941, 3601, 4353, 5203, 6157, 7221, 8401, 9703, 11133, 12697, 14401, 16251, 18253, 20413, 22737, 25231, 27901, 30753, 33793, 37027, 40461, 44101, 47953, 52023, 56317, 60841, 65601
OFFSET
0,2
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Colin Barker, Aug 29 2014
G.f.: (1 - x + 7*x^2 - x^3)/(1-x)^4. - Colin Barker, Aug 29 2014
a(n) = A081423(n) + A000217(n-1). - Bruce J. Nicholson, Jan 06 2019
MAPLE
with(combinat): seq(fibonacci(3, n)+n^3, n=0..40); # Zerinvary Lajos, May 25 2008
MATHEMATICA
Table[n^3+n^2+1, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Mar 09 2011 *)
PROG
(Magma) [(n^3+n^2+1): n in [1..60]]; // Vincenzo Librandi, Apr 06 2011
(PARI) Vec(-(x^3-7*x^2+x-1)/(x-1)^4 + O(x^100)) \\ Colin Barker, Aug 29 2014
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Oct 26 2004
STATUS
approved