The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033562 a(n) = 2*n^3 + 1. 9
 1, 3, 17, 55, 129, 251, 433, 687, 1025, 1459, 2001, 2663, 3457, 4395, 5489, 6751, 8193, 9827, 11665, 13719, 16001, 18523, 21297, 24335, 27649, 31251, 35153, 39367, 43905, 48779, 54001, 59583, 65537, 71875, 78609, 85751, 93313, 101307, 109745, 118639, 128001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A058895(n)^3 + A068601(n)^3 + a(n)^3 = A185065(n)^3, for n>0. - Vincenzo Librandi, Mar 13 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA G.f.: 1 + x*(3 + 5*x + 5*x^2 - x^3)/(1-x)^4. - Vincenzo Librandi, Mar 13 2012 E.g.f.: (1 + 2*x + 6*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Oct 12 2019 MAPLE seq(2*n^3+1, n=0..50); # G. C. Greubel, Oct 12 2019 MATHEMATICA 2*Range[0, 50]^3+1 (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*) CoefficientList[Series[1+x*(3+5x+5x^2-x^3)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 13 2012 *) PROG (PARI) a(n)=2*n^3+1 \\ Charles R Greathouse IV, Mar 11, 2012 (MAGMA) [2*n^3+1: n in [0..50]]; // G. C. Greubel, Oct 12 2019 (Sage) [2*n^3+1 for n in range(50)] # G. C. Greubel, Oct 12 2019 (GAP) List([0..50], n-> 2*n^3+1); # G. C. Greubel, Oct 12 2019 CROSSREFS Cf. A058895, A068601, A185065. Sequence in context: A173733 A294134 A258032 * A212415 A152457 A130857 Adjacent sequences:  A033559 A033560 A033561 * A033563 A033564 A033565 KEYWORD nonn,easy AUTHOR EXTENSIONS Terms a(34) onward added by G. C. Greubel, Oct 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 08:44 EDT 2021. Contains 345395 sequences. (Running on oeis4.)