OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
Partial sums of A162147. - J. M. Bergot, Jun 21 2013
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 25.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
From Bruno Berselli, May 30 2012: (Start)
G.f.: x^2*(3+2*x)/(1-x)^5.
a(n) = (n-1)*n*(n+1)*(5*n+2)/24. (End)
E.g.f.: x^2*(36 + 32*x + 5*x^2)*exp(x)/24. - G. C. Greubel, Jul 11 2019
EXAMPLE
a(3) counts these (w,x,y,z): (1,2,2,2), (1,2,2,3), (1,3,3,3).
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w < x >= y <= z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212415 *)
Table[n*(5*n+2)*(n^2-1)/4!, {n, 0, 40}] (* G. C. Greubel, Jul 11 2019 *)
PROG
(PARI) vector(40, n, n--; n*(5*n+2)*(n^2-1)/4!) \\ G. C. Greubel, Jul 11 2019
(Magma) [n*(5*n+2)*(n^2-1)/24: n in [0..40]]; // G. C. Greubel, Jul 11 2019
(Sage) [n*(5*n+2)*(n^2-1)/24 for n in (0..40)] # G. C. Greubel, Jul 11 2019
(GAP) List([0..40], n-> n*(5*n+2)*(n^2-1)/24); # G. C. Greubel, Jul 11 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 19 2012
STATUS
approved