login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258032
Primes p such that p^3 with the rightmost digit removed is also prime.
2
3, 17, 53, 113, 157, 233, 257, 277, 353, 359, 379, 397, 677, 877, 997, 1039, 1217, 1439, 1613, 1697, 1879, 1973, 1997, 2273, 2417, 2459, 2777, 3257, 3413, 3499, 3517, 3697, 3779, 4073, 4157, 4177, 4339, 4973, 4999, 5077, 5197, 5279, 5639, 5813, 5897, 6277, 6379
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(2) = 17 is prime: 17^3 = 4913. Removing rightmost digit gives 491 which is prime.
a(3) = 53 is prime: 53^3 = 148877. Removing rightmost digit gives 14887 which is prime.
MATHEMATICA
Select[Prime[Range[1000]], PrimeQ[Floor[(#^3)/10]] &]
PROG
(PARI) forprime(p=1, 10000, if(isprime(floor((p^3)/10)), print1(p, ", ")))
(Magma) [p: p in PrimesUpTo(6500) |IsPrime(Floor(p^3/10))]; // Vincenzo Librandi, May 17 2015
(Haskell)
a258032 n = a258032_list !! (n-1)
a258032_list = filter ((== 1) . a010051' . flip div 10. (^ 3)) a000040_list
-- Reinhard Zumkeller, May 18 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, May 16 2015
STATUS
approved