login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152457
Partial sums of A027444.
0
0, 3, 17, 56, 140, 295, 553, 952, 1536, 2355, 3465, 4928, 6812, 9191, 12145, 15760, 20128, 25347, 31521, 38760, 47180, 56903, 68057, 80776, 95200, 111475, 129753, 150192, 172956, 198215, 226145, 256928, 290752, 327811, 368305, 412440, 460428
OFFSET
0,2
COMMENTS
1^1+1^2+1^3=3; (2^1+2^2+2^3)+3=17; ...
FORMULA
a(n) = n(n + 1)(3n^2 + 7n + 8)/12. - Giovanni Resta, Jun 15 2013
a(0)=0, a(1)=3, a(2)=17, a(3)=56, a(4)=140, a(n)=5*a(n-1)-10*a(n-2)+ 10*a(n-3)- 5*a(n-4)+a(n-5). - Harvey P. Dale, Dec 13 2013
G.f.: -x*(3+2*x+x^2) / (x-1)^5 . - R. J. Mathar, Jul 18 2016
MATHEMATICA
Table[Sum[i + i^2 + i^3, {i, n}], {n, 0, 25}]
Accumulate[Table[n^3+n^2+n, {n, 0, 50}]] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 3, 17, 56, 140}, 50] (* Harvey P. Dale, Dec 13 2013 *)
PROG
(PARI) a(n)=n*(n+1)*(3*n^2+7*n+8)/12 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Sequence in context: A361525 A033562 A212415 * A130857 A226719 A168547
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition corrected by Jeremy Gardiner, Jun 15 2013
STATUS
approved