OFFSET
0,2
COMMENTS
1^1+1^2+1^3=3; (2^1+2^2+2^3)+3=17; ...
LINKS
Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).
FORMULA
a(n) = n(n + 1)(3n^2 + 7n + 8)/12. - Giovanni Resta, Jun 15 2013
a(0)=0, a(1)=3, a(2)=17, a(3)=56, a(4)=140, a(n)=5*a(n-1)-10*a(n-2)+ 10*a(n-3)- 5*a(n-4)+a(n-5). - Harvey P. Dale, Dec 13 2013
G.f.: -x*(3+2*x+x^2) / (x-1)^5 . - R. J. Mathar, Jul 18 2016
MATHEMATICA
Table[Sum[i + i^2 + i^3, {i, n}], {n, 0, 25}]
Accumulate[Table[n^3+n^2+n, {n, 0, 50}]] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 3, 17, 56, 140}, 50] (* Harvey P. Dale, Dec 13 2013 *)
PROG
(PARI) a(n)=n*(n+1)*(3*n^2+7*n+8)/12 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Dec 05 2008
EXTENSIONS
Definition corrected by Jeremy Gardiner, Jun 15 2013
STATUS
approved