login
A098546
Table read by rows: row n has a term T(n,k) for each of the partition(n) partitions of n. T(n,k) = binomial(n,m) where m is the number of parts.
5
1, 2, 1, 3, 3, 1, 4, 6, 6, 4, 1, 5, 10, 10, 10, 10, 5, 1, 6, 15, 15, 15, 20, 20, 20, 15, 15, 6, 1, 7, 21, 21, 21, 35, 35, 35, 35, 35, 35, 35, 21, 21, 7, 1, 8, 28, 28, 28, 28, 56, 56, 56, 56, 56, 70, 70, 70, 70, 70, 56, 56, 56, 28, 28, 8, 1, 9, 36, 36, 36, 36, 84, 84, 84, 84, 84, 84, 84
OFFSET
1,2
COMMENTS
A035206 and A036038 were used to generate A049009 (Words over signatures). A098346 and A049019 provide another approach to the same end since A098346 times A049019 also yields A049009. (cf. A000312 and A000670).
Partitions are in Abramowitz and Stegun order. - Franklin T. Adams-Watters, Nov 20 2006
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
a(n) = Combin( A036042(n), A036043(n) )
EXAMPLE
A036042 begins 1 2 2 3 3 3 4 4 4 4 4 ...
A036043 begins 1 1 2 1 2 3 1 2 2 3 4 ...
so a(n) begins 1 2 1 3 3 1 4 6 6 4 1 ...
Table begins
.
1
2 1
3 3 1
4 6 6 4 1
5 10 10 10 10 5 1
6 15 15 20 15 20 15 20 15 6 1
.
MATHEMATICA
Table[Sequence @@
Map[Function[p, Binomial[n, Length[p]]], IntegerPartitions[n]], {n,
1, 10}] (* Olivier Gérard, May 7 2024 *)
CROSSREFS
Cf. A090657, A000041 (row lengths), A098545 (row sums), A036036, A036042, A036043.
Sequence in context: A122176 A159881 A319539 * A126277 A253273 A055129
KEYWORD
easy,nonn,tabf
AUTHOR
Alford Arnold, Sep 14 2004
STATUS
approved