|
|
A049009
|
|
Number of functions from a set to itself such that the sizes of the preimages of the individual elements in the range form the n-th partition in Abramowitz and Stegun order.
|
|
9
|
|
|
1, 1, 2, 2, 3, 18, 6, 4, 48, 36, 144, 24, 5, 100, 200, 600, 900, 1200, 120, 6, 180, 450, 300, 1800, 7200, 1800, 7200, 16200, 10800, 720, 7, 294, 882, 1470, 4410, 22050, 14700, 22050, 29400, 176400, 88200, 88200, 264600, 105840, 5040, 8, 448, 1568, 3136, 1960
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n,k) is a refinement of 1; 2,2; 3,18,6; 4,84,144,24; ... cf. A019575.
a(n,k)/A036040(n,k) and a(n,k)/A048996(n,k) are also integer sequences.
Let f,g be functions from [n] into [n]. Let S_n be the symmetric group on n letters. Then f and g form the same partition iff S_nfS_n = S_ngS_n. - Geoffrey Critzer, Jan 13 2022
|
|
REFERENCES
|
O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page38.
|
|
LINKS
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
|
|
FORMULA
|
|
|
EXAMPLE
|
Table begins:
1;
1;
2, 2;
3, 18, 6;
4, 48, 36, 144, 24;
...
For n = 4, partition [3], we can map all three of {1,2,3} to any one of them, for 3 possible values. For n=5, partition [2,1], there are 3 choices for which element is alone in a preimage, 3 choices for which element to map that to and then 2 choices for which element to map the pair to, so a(5) = 3*3*2 = 18.
|
|
MATHEMATICA
|
f[list_] := Multinomial @@ Join[{nn - Length[list]}, Table[Count[list, i], {i, 1, nn}]]*Multinomial @@ list; Table[nn = n; Map[f, IntegerPartitions[nn]], {n, 0, 10}] // Grid (* Geoffrey Critzer, Jan 13 2022 *)
|
|
PROG
|
(PARI)
C(sig)={my(S=Set(sig)); (binomial(vecsum(sig), #sig)) * (#sig)! * vecsum(sig)! / (prod(k=1, #S, (#select(t->t==S[k], sig))!) * prod(k=1, #sig, sig[k]!))}
Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|